ﻻ يوجد ملخص باللغة العربية
The stochastic Landau-Lifshitz-Bloch equation describes the phase spins in a ferromagnetic material and has significant role in simulating heat-assisted magnetic recording. In this paper, we consider the deviation of the solution to the 1-D stochastic Landau-Lifshitz-Bloch equation, that is, we give the asymptotic behavior of the trajectory $frac{u_varepsilon-u_0}{sqrt{varepsilon}lambda(varepsilon)}$ as $varepsilonrightarrow 0+$, for $lambda(varepsilon)=frac{1}{sqrt{varepsilon}}$ and $1$ respectively. In other words, the large deviation principle and the central limit theorem are established respectively.
Precise modeling of the magnetization dynamics of nanoparticles with finite size effects at fast varying temperatures is a computationally challenging task. Based on the Landau-Lifshitz-Bloch (LLB) equation we derive a coarse grained model for disord
We derive the Landau-Lifshitz-Bloch (LLB) equation for a two-component magnetic system valid up to the Curie temperature. As an example, we consider disordered GdFeCo ferrimagnet where the ultrafast optically induced magnetization switching under the
In this paper, we consider homogenization of the Landau-Lifshitz equation with a highly oscillatory material coefficient with period $varepsilon$ modeling a ferromagnetic composite. We derive equations for the homogenized solution to the problem and
In this work, we derive the Landau-Lifshitz-Bloch equation accounting for the multi-domain antiferromagnetic (AFM) lattice at finite temperature, in order to investigate the domain wall (DW) motion, the core issue for AFM spintronics. The continuity
The detailed derivation of the quantum Landau-Lifshitz-Bloch (qLLB) equation for simple spin-flip scattering mechanisms based on spin-phonon and spin-electron interactions is presented and the approximations are discussed. The qLLB equation is writte