ﻻ يوجد ملخص باللغة العربية
Precise modeling of the magnetization dynamics of nanoparticles with finite size effects at fast varying temperatures is a computationally challenging task. Based on the Landau-Lifshitz-Bloch (LLB) equation we derive a coarse grained model for disordered ferrimagnets, which is both fast and accurate. First, we incorporate stochastic fluctuations to the existing ferrimagnetic LLB equation. Further, we derive a thermodynamic expression for the temperature dependent susceptibilities, which is essential to model finite size effects. Together with the zero field equilibrium magnetization the susceptibilities are used in the stochastic ferrimagnetic LLB to simulate a $5times10$ nm$^2$ ferrimagnetic GdFeCo particle with 70 % FeCo and 30 % Gd under various external applied fields and heat pulses. The obtained trajectories agree well with those of an atomistic model, which solves the stochastic Landau-Lifshitz-Gilbert equation for each atom. Additionally, we derive an expression for the intergrain exchange field which couple the ferromagnetic sublattices of a ferrimagnet. A comparison of the magnetization dynamics obtained from this simpler model with those of the ferrimagnetic LLB equation shows a perfect agreement.
We derive the Landau-Lifshitz-Bloch (LLB) equation for a two-component magnetic system valid up to the Curie temperature. As an example, we consider disordered GdFeCo ferrimagnet where the ultrafast optically induced magnetization switching under the
In this work, we derive the Landau-Lifshitz-Bloch equation accounting for the multi-domain antiferromagnetic (AFM) lattice at finite temperature, in order to investigate the domain wall (DW) motion, the core issue for AFM spintronics. The continuity
The stochastic Landau-Lifshitz-Bloch equation describes the phase spins in a ferromagnetic material and has significant role in simulating heat-assisted magnetic recording. In this paper, we consider the deviation of the solution to the 1-D stochasti
The detailed derivation of the quantum Landau-Lifshitz-Bloch (qLLB) equation for simple spin-flip scattering mechanisms based on spin-phonon and spin-electron interactions is presented and the approximations are discussed. The qLLB equation is writte
Using the Landau-Lifshitz-Bloch (LLB) equation for ferromagnetic materials, we derive analytic expressions for temperature dependent absorption spectra as probed by ferromagnetic resonance (FMR). By analysing the resulting expressions, we can predict