ﻻ يوجد ملخص باللغة العربية
In this paper, we consider homogenization of the Landau-Lifshitz equation with a highly oscillatory material coefficient with period $varepsilon$ modeling a ferromagnetic composite. We derive equations for the homogenized solution to the problem and the corresponding correctors and obtain estimates for the difference between the exact and homogenized solution as well as corrected approximations to the solution. Convergence rates in $varepsilon$ over times $O(varepsilon^sigma)$ with $0leq sigmaleq 2$ are given in the Sobolev norm $H^q$, where $q$ is limited by the regularity of the solution to the detailed Landau-Lifshitz equation and the homogenized equation. The rates depend on $q$, $sigma$ and the the number of correctors.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous
In this paper, we present a finite difference heterogeneous multiscale method for the Landau-Lifshitz equation with a highly oscillatory diffusion coefficient. The approach combines a higher order discretization and artificial damping in the so-calle
We consider the numerical approximation of the inertial Landau-Lifshitz-Gilbert (iLLG) equation, which describes the dynamics of the magnetization in ferromagnetic materials at subpicosecond time scales. We propose and analyze two fully discrete nume
We propose new semi-implicit numerical methods for the integration of the stochastic Landau-Lifshitz equation with built-in angular momentum conservation. The performance of the proposed integrators is tested on the 1D Heisenberg chain. For this syst
The stochastic Landau-Lifshitz-Bloch equation describes the phase spins in a ferromagnetic material and has significant role in simulating heat-assisted magnetic recording. In this paper, we consider the deviation of the solution to the 1-D stochasti