ﻻ يوجد ملخص باللغة العربية
In this work, we derive the Landau-Lifshitz-Bloch equation accounting for the multi-domain antiferromagnetic (AFM) lattice at finite temperature, in order to investigate the domain wall (DW) motion, the core issue for AFM spintronics. The continuity equation of the staggered magnetization is obtained using the continuum approximation, allowing an analytical calculation on the domain wall dynamics. The influence of temperature on the static domain wall profile is investigated, and the analytical calculations reproduce well earlier numerical results on temperature gradient driven saturation velocity of the AFM domain wall, confirming the validity of this theory. Moreover, it is worth noting that this theory could be also applied to dynamics of various wall motions in an AFM system. The present theory represents a comprehensive approach to the domain wall dynamics in AFM materials, a crucial step toward the development of AFM spintronics.
We derive the Landau-Lifshitz-Bloch (LLB) equation for a two-component magnetic system valid up to the Curie temperature. As an example, we consider disordered GdFeCo ferrimagnet where the ultrafast optically induced magnetization switching under the
We employ the Landau-Lifshitz-Bloch (LLB) equation to investigate current-induced domain wall motion at finite temperatures by numerical micromagnetic simulations. We extend the LLB equation with spin torque terms that account for the effect of spin-
Using the Landau-Lifshitz-Bloch (LLB) equation for ferromagnetic materials, we derive analytic expressions for temperature dependent absorption spectra as probed by ferromagnetic resonance (FMR). By analysing the resulting expressions, we can predict
Precise modeling of the magnetization dynamics of nanoparticles with finite size effects at fast varying temperatures is a computationally challenging task. Based on the Landau-Lifshitz-Bloch (LLB) equation we derive a coarse grained model for disord
Domain-wall magnetoresistance and low-frequency noise have been studied in epitaxial antiferromagnetically-coupled [Fe/Cr(001)]_10 multilayers and ferromagnetic Co line structures as a function of DC current intensity. In [Fe/Cr(001)]_10 multilayers