ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalisation error in learning with random features and the hidden manifold model

118   0   0.0 ( 0 )
 نشر من قبل Bruno Loureiro
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study generalised linear regression and classification for a synthetically generated dataset encompassing different problems of interest, such as learning with random features, neural networks in the lazy training regime, and the hidden manifold model. We consider the high-dimensional regime and using the replica method from statistical physics, we provide a closed-form expression for the asymptotic generalisation performance in these problems, valid in both the under- and over-parametrised regimes and for a broad choice of generalised linear model loss functions. In particular, we show how to obtain analytically the so-called double descent behaviour for logistic regression with a peak at the interpolation threshold, we illustrate the superiority of orthogonal against random Gaussian projections in learning with random features, and discuss the role played by correlations in the data generated by the hidden manifold model. Beyond the interest in these particular problems, the theoretical formalism introduced in this manuscript provides a path to further extensions to more complex tasks.

قيم البحث

اقرأ أيضاً

Consider the classical supervised learning problem: we are given data $(y_i,{boldsymbol x}_i)$, $ile n$, with $y_i$ a response and ${boldsymbol x}_iin {mathcal X}$ a covariates vector, and try to learn a model $f:{mathcal X}to{mathbb R}$ to predict f uture responses. Random features methods map the covariates vector ${boldsymbol x}_i$ to a point ${boldsymbol phi}({boldsymbol x}_i)$ in a higher dimensional space ${mathbb R}^N$, via a random featurization map ${boldsymbol phi}$. We study the use of random features methods in conjunction with ridge regression in the feature space ${mathbb R}^N$. This can be viewed as a finite-dimensional approximation of kernel ridge regression (KRR), or as a stylized model for neural networks in the so called lazy training regime. We define a class of problems satisfying certain spectral conditions on the underlying kernels, and a hypercontractivity assumption on the associated eigenfunctions. These conditions are verified by classical high-dimensional examples. Under these conditions, we prove a sharp characterization of the error of random features ridge regression. In particular, we address two fundamental questions: $(1)$~What is the generalization error of KRR? $(2)$~How big $N$ should be for the random features approximation to achieve the same error as KRR? In this setting, we prove that KRR is well approximated by a projection onto the top $ell$ eigenfunctions of the kernel, where $ell$ depends on the sample size $n$. We show that the test error of random features ridge regression is dominated by its approximation error and is larger than the error of KRR as long as $Nle n^{1-delta}$ for some $delta>0$. We characterize this gap. For $Nge n^{1+delta}$, random features achieve the same error as the corresponding KRR, and further increasing $N$ does not lead to a significant change in test error.
Random features are a central technique for scalable learning algorithms based on kernel methods. A recent work has shown that an algorithm for machine learning by quantum computer, quantum machine learning (QML), can exponentially speed up sampling of optimized random features, even without imposing restrictive assumptions on sparsity and low-rankness of matrices that had limited applicability of conventional QML algorithms; this QML algorithm makes it possible to significantly reduce and provably minimize the required number of features for regression tasks. However, a major interest in the field of QML is how widely the advantages of quantum computation can be exploited, not only in the regression tasks. We here construct a QML algorithm for a classification task accelerated by the optimized random features. We prove that the QML algorithm for sampling optimized random features, combined with stochastic gradient descent (SGD), can achieve state-of-the-art exponential convergence speed of reducing classification error in a classification task under a low-noise condition; at the same time, our algorithm with optimized random features can take advantage of the significant reduction of the required number of features so as to accelerate each iteration in the SGD and evaluation of the classifier obtained from our algorithm. These results discover a promising application of QML to significant acceleration of the leading classification algorithm based on kernel methods, without ruining its applicability to a practical class of data sets and the exponential error-convergence speed.
A number of machine learning tasks entail a high degree of invariance: the data distribution does not change if we act on the data with a certain group of transformations. For instance, labels of images are invariant under translations of the images. Certain neural network architectures -- for instance, convolutional networks -- are believed to owe their success to the fact that they exploit such invariance properties. With the objective of quantifying the gain achieved by invariant architectures, we introduce two classes of models: invariant random features and invariant kernel methods. The latter includes, as a special case, the neural tangent kernel for convolutional networks with global average pooling. We consider uniform covariates distributions on the sphere and hypercube and a general invariant target function. We characterize the test error of invariant methods in a high-dimensional regime in which the sample size and number of hidden units scale as polynomials in the dimension, for a class of groups that we call `degeneracy $alpha$, with $alpha leq 1$. We show that exploiting invariance in the architecture saves a $d^alpha$ factor ($d$ stands for the dimension) in sample size and number of hidden units to achieve the same test error as for unstructured architectures. Finally, we show that output symmetrization of an unstructured kernel estimator does not give a significant statistical improvement; on the other hand, data augmentation with an unstructured kernel estimator is equivalent to an invariant kernel estimator and enjoys the same improvement in statistical efficiency.
We investigate the generalisation performance of Distributed Gradient Descent with Implicit Regularisation and Random Features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution . Along with reducing the memory footprint, Random Features are particularly convenient in this setting as they provide a common parameterisation across agents that allows to overcome previous difficulties in implementing Decentralised Kernel Regression. Under standard source and capacity assumptions, we establish high probability bounds on the predictive performance for each agent as a function of the step size, number of iterations, inverse spectral gap of the communication matrix and number of Random Features. By tuning these parameters, we obtain statistical rates that are minimax optimal with respect to the total number of samples in the network. The algorithm provides a linear improvement over single machine Gradient Descent in memory cost and, when agents hold enough data with respect to the network size and inverse spectral gap, a linear speed-up in computational runtime for any network topology. We present simulations that show how the number of Random Features, iterations and samples impact predictive performance.
256 - Xinjia Chen 2011
In this article, we derive a new generalization of Chebyshev inequality for random vectors. We demonstrate that the new generalization is much less conservative than the classical generalization.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا