ﻻ يوجد ملخص باللغة العربية
A number of machine learning tasks entail a high degree of invariance: the data distribution does not change if we act on the data with a certain group of transformations. For instance, labels of images are invariant under translations of the images. Certain neural network architectures -- for instance, convolutional networks -- are believed to owe their success to the fact that they exploit such invariance properties. With the objective of quantifying the gain achieved by invariant architectures, we introduce two classes of models: invariant random features and invariant kernel methods. The latter includes, as a special case, the neural tangent kernel for convolutional networks with global average pooling. We consider uniform covariates distributions on the sphere and hypercube and a general invariant target function. We characterize the test error of invariant methods in a high-dimensional regime in which the sample size and number of hidden units scale as polynomials in the dimension, for a class of groups that we call `degeneracy $alpha$, with $alpha leq 1$. We show that exploiting invariance in the architecture saves a $d^alpha$ factor ($d$ stands for the dimension) in sample size and number of hidden units to achieve the same test error as for unstructured architectures. Finally, we show that output symmetrization of an unstructured kernel estimator does not give a significant statistical improvement; on the other hand, data augmentation with an unstructured kernel estimator is equivalent to an invariant kernel estimator and enjoys the same improvement in statistical efficiency.
We investigate the generalisation performance of Distributed Gradient Descent with Implicit Regularisation and Random Features in the homogenous setting where a network of agents are given data sampled independently from the same unknown distribution
Although kernel methods are widely used in many learning problems, they have poor scalability to large datasets. To address this problem, sketching and stochastic gradient methods are the most commonly used techniques to derive efficient large-scale
This article characterizes the exact asymptotics of random Fourier feature (RFF) regression, in the realistic setting where the number of data samples $n$, their dimension $p$, and the dimension of feature space $N$ are all large and comparable. In t
The randomized-feature approach has been successfully employed in large-scale kernel approximation and supervised learning. The distribution from which the random features are drawn impacts the number of features required to efficiently perform a lea
We propose a probabilistic kernel approach for preferential learning from pairwise duelling data using Gaussian Processes. Different from previous methods, we do not impose a total order on the item space, hence can capture more expressive latent pre