ترغب بنشر مسار تعليمي؟ اضغط هنا

Generalization error of random features and kernel methods: hypercontractivity and kernel matrix concentration

258   0   0.0 ( 0 )
 نشر من قبل Andrea Montanari
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Consider the classical supervised learning problem: we are given data $(y_i,{boldsymbol x}_i)$, $ile n$, with $y_i$ a response and ${boldsymbol x}_iin {mathcal X}$ a covariates vector, and try to learn a model $f:{mathcal X}to{mathbb R}$ to predict future responses. Random features methods map the covariates vector ${boldsymbol x}_i$ to a point ${boldsymbol phi}({boldsymbol x}_i)$ in a higher dimensional space ${mathbb R}^N$, via a random featurization map ${boldsymbol phi}$. We study the use of random features methods in conjunction with ridge regression in the feature space ${mathbb R}^N$. This can be viewed as a finite-dimensional approximation of kernel ridge regression (KRR), or as a stylized model for neural networks in the so called lazy training regime. We define a class of problems satisfying certain spectral conditions on the underlying kernels, and a hypercontractivity assumption on the associated eigenfunctions. These conditions are verified by classical high-dimensional examples. Under these conditions, we prove a sharp characterization of the error of random features ridge regression. In particular, we address two fundamental questions: $(1)$~What is the generalization error of KRR? $(2)$~How big $N$ should be for the random features approximation to achieve the same error as KRR? In this setting, we prove that KRR is well approximated by a projection onto the top $ell$ eigenfunctions of the kernel, where $ell$ depends on the sample size $n$. We show that the test error of random features ridge regression is dominated by its approximation error and is larger than the error of KRR as long as $Nle n^{1-delta}$ for some $delta>0$. We characterize this gap. For $Nge n^{1+delta}$, random features achieve the same error as the corresponding KRR, and further increasing $N$ does not lead to a significant change in test error.

قيم البحث

اقرأ أيضاً

Measuring conditional independence is one of the important tasks in statistical inference and is fundamental in causal discovery, feature selection, dimensionality reduction, Bayesian network learning, and others. In this work, we explore the connect ion between conditional independence measures induced by distances on a metric space and reproducing kernels associated with a reproducing kernel Hilbert space (RKHS). For certain distance and kernel pairs, we show the distance-based conditional independence measures to be equivalent to that of kernel-based measures. On the other hand, we also show that some popular---in machine learning---kernel conditional independence measures based on the Hilbert-Schmidt norm of a certain cross-conditional covariance operator, do not have a simple distance representation, except in some limiting cases. This paper, therefore, shows the distance and kernel measures of conditional independence to be not quite equivalent unlike in the case of joint independence as shown by Sejdinovic et al. (2013).
We investigate the problem of testing whether $d$ random variables, which may or may not be continuous, are jointly (or mutually) independent. Our method builds on ideas of the two variable Hilbert-Schmidt independence criterion (HSIC) but allows for an arbitrary number of variables. We embed the $d$-dimensional joint distribution and the product of the marginals into a reproducing kernel Hilbert space and define the $d$-variable Hilbert-Schmidt independence criterion (dHSIC) as the squared distance between the embeddings. In the population case, the value of dHSIC is zero if and only if the $d$ variables are jointly independent, as long as the kernel is characteristic. Based on an empirical estimate of dHSIC, we define three different non-parametric hypothesis tests: a permutation test, a bootstrap test and a test based on a Gamma approximation. We prove that the permutation test achieves the significance level and that the bootstrap test achieves pointwise asymptotic significance level as well as pointwise asymptotic consistency (i.e., it is able to detect any type of fixed dependence in the large sample limit). The Gamma approximation does not come with these guarantees; however, it is computationally very fast and for small $d$, it performs well in practice. Finally, we apply the test to a problem in causal discovery.
The Neural Tangent Kernel (NTK) has discovered connections between deep neural networks and kernel methods with insights of optimization and generalization. Motivated by this, recent works report that NTK can achieve better performances compared to t raining neural networks on small-scale datasets. However, results under large-scale settings are hardly studied due to the computational limitation of kernel methods. In this work, we propose an efficient feature map construction of the NTK of fully-connected ReLU network which enables us to apply it to large-scale datasets. We combine random features of the arc-cosine kernels with a sketching-based algorithm which can run in linear with respect to both the number of data points and input dimension. We show that dimension of the resulting features is much smaller than other baseline feature map constructions to achieve comparable error bounds both in theory and practice. We additionally utilize the leverage score based sampling for improved bounds of arc-cosine random features and prove a spectral approximation guarantee of the proposed feature map to the NTK matrix of two-layer neural network. We benchmark a variety of machine learning tasks to demonstrate the superiority of the proposed scheme. In particular, our algorithm can run tens of magnitude faster than the exact kernel methods for large-scale settings without performance loss.
Despite their success, kernel methods suffer from a massive computational cost in practice. In this paper, in lieu of commonly used kernel expansion with respect to $N$ inputs, we develop a novel optimal design maximizing the entropy among kernel fea tures. This procedure results in a kernel expansion with respect to entropic optimal features (EOF), improving the data representation dramatically due to features dissimilarity. Under mild technical assumptions, our generalization bound shows that with only $O(N^{frac{1}{4}})$ features (disregarding logarithmic factors), we can achieve the optimal statistical accuracy (i.e., $O(1/sqrt{N})$). The salient feature of our design is its sparsity that significantly reduces the time and space cost. Our numerical experiments on benchmark datasets verify the superiority of EOF over the state-of-the-art in kernel approximation.
Analysis of large-scale sequential data has been one of the most crucial tasks in areas such as bioinformatics, text, and audio mining. Existing string kernels, however, either (i) rely on local features of short substructures in the string, which ha rdly capture long discriminative patterns, (ii) sum over too many substructures, such as all possible subsequences, which leads to diagonal dominance of the kernel matrix, or (iii) rely on non-positive-definite similarity measures derived from the edit distance. Furthermore, while there have been works addressing the computational challenge with respect to the length of string, most of them still experience quadratic complexity in terms of the number of training samples when used in a kernel-based classifier. In this paper, we present a new class of global string kernels that aims to (i) discover global properties hidden in the strings through global alignments, (ii) maintain positive-definiteness of the kernel, without introducing a diagonal dominant kernel matrix, and (iii) have a training cost linear with respect to not only the length of the string but also the number of training string samples. To this end, the proposed kernels are explicitly defined through a series of different random feature maps, each corresponding to a distribution of random strings. We show that kernels defined this way are always positive-definite, and exhibit computational benefits as they always produce emph{Random String Embeddings (RSE)} that can be directly used in any linear classification models. Our extensive experiments on nine benchmark datasets corroborate that RSE achieves better or comparable accuracy in comparison to state-of-the-art baselines, especially with the strings of longer lengths. In addition, we empirically show that RSE scales linearly with the increase of the number and the length of string.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا