ﻻ يوجد ملخص باللغة العربية
Organizations are rapidly deploying artificial intelligence (AI) systems to manage their workers. However, AI has been found at times to be unfair to workers. Unfairness toward workers has been associated with decreased worker effort and increased worker turnover. To avoid such problems, AI systems must be designed to support fairness and redress instances of unfairness. Despite the attention related to AI unfairness, there has not been a theoretical and systematic approach to developing a design agenda. This paper addresses the issue in three ways. First, we introduce the organizational justice theory, three different fairness types (distributive, procedural, interactional), and the frameworks for redressing instances of unfairness (retributive justice, restorative justice). Second, we review the design literature that specifically focuses on issues of AI fairness in organizations. Third, we propose a design agenda for AI fairness in organizations that applies each of the fairness types to organizational scenarios. Then, the paper concludes with implications for future research.
Non-experts have long made important contributions to machine learning (ML) by contributing training data, and recent work has shown that non-experts can also help with feature engineering by suggesting novel predictive features. However, non-experts
Tracking suspected cases of COVID-19 is crucial to suppressing the spread of COVID-19 pandemic. Active monitoring and proactive inspection are indispensable to mitigate COVID-19 spread, though these require considerable social and economic expense. T
Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, w
Personality has been identified as a vital factor in understanding the quality of human robot interactions. Despite this the research in this area remains fragmented and lacks a coherent framework. This makes it difficult to understand what we know a
AI has provided us with the ability to automate tasks, extract information from vast amounts of data, and synthesize media that is nearly indistinguishable from the real thing. However, positive tools can also be used for negative purposes. In partic