ﻻ يوجد ملخص باللغة العربية
Non-experts have long made important contributions to machine learning (ML) by contributing training data, and recent work has shown that non-experts can also help with feature engineering by suggesting novel predictive features. However, non-experts have only contributed features to prediction tasks already posed by experienced ML practitioners. Here we study how non-experts can design prediction tasks themselves, what types of tasks non-experts will design, and whether predictive models can be automatically trained on data sourced for their tasks. We use a crowdsourcing platform where non-experts design predictive tasks that are then categorized and ranked by the crowd. Crowdsourced data are collected for top-ranked tasks and predictive models are then trained and evaluated automatically using those data. We show that individuals without ML experience can collectively construct useful datasets and that predictive models can be learned on these datasets, but challenges remain. The prediction tasks designed by non-experts covered a broad range of domains, from politics and current events to health behavior, demographics, and more. Proper instructions are crucial for non-experts, so we also conducted a randomized trial to understand how different instructions may influence the types of prediction tasks being proposed. In general, understanding better how non-experts can contribute to ML can further leverage advances in Automatic ML and has important implications as ML continues to drive workplace automation.
Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, w
Organizations are rapidly deploying artificial intelligence (AI) systems to manage their workers. However, AI has been found at times to be unfair to workers. Unfairness toward workers has been associated with decreased worker effort and increased wo
Machine Learning and Artificial Intelligence are considered an integral part of the Fourth Industrial Revolution. Their impact, and far-reaching consequences, while acknowledged, are yet to be comprehended. These technologies are very specialized, an
AI for supporting designers needs to be rethought. It should aim to cooperate, not automate, by supporting and leveraging the creativity and problem-solving of designers. The challenge for such AI is how to infer designers goals and then help them wi
Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This