ترغب بنشر مسار تعليمي؟ اضغط هنا

The Who in Explainable AI: How AI Background Shapes Perceptions of AI Explanations

205   0   0.0 ( 0 )
 نشر من قبل Upol Ehsan
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Explainability of AI systems is critical for users to take informed actions and hold systems accountable. While opening the opaque box is important, understanding who opens the box can govern if the Human-AI interaction is effective. In this paper, we conduct a mixed-methods study of how two different groups of whos--people with and without a background in AI--perceive different types of AI explanations. These groups were chosen to look at how disparities in AI backgrounds can exacerbate the creator-consumer gap. We quantitatively share what the perceptions are along five dimensions: confidence, intelligence, understandability, second chance, and friendliness. Qualitatively, we highlight how the AI background influences each groups interpretations and elucidate why the differences might exist through the lenses of appropriation and cognitive heuristics. We find that (1) both groups had unwarranted faith in numbers, to different extents and for different reasons, (2) each group found explanatory values in different explanations that went beyond the usage we designed them for, and (3) each group had different requirements of what counts as humanlike explanations. Using our findings, we discuss potential negative consequences such as harmful manipulation of user trust and propose design interventions to mitigate them. By bringing conscious awareness to how and why AI backgrounds shape perceptions of potential creators and consumers in XAI, our work takes a formative step in advancing a pluralistic Human-centered Explainable AI discourse.

قيم البحث

اقرأ أيضاً

The rapid advancement of artificial intelligence (AI) is changing our lives in many ways. One application domain is data science. New techniques in automating the creation of AI, known as AutoAI or AutoML, aim to automate the work practices of data s cientists. AutoAI systems are capable of autonomously ingesting and pre-processing data, engineering new features, and creating and scoring models based on a target objectives (e.g. accuracy or run-time efficiency). Though not yet widely adopted, we are interested in understanding how AutoAI will impact the practice of data science. We conducted interviews with 20 data scientists who work at a large, multinational technology company and practice data science in various business settings. Our goal is to understand their current work practices and how these practices might change with AutoAI. Reactions were mixed: while informants expressed concerns about the trend of automating their jobs, they also strongly felt it was inevitable. Despite these concerns, they remained optimistic about their future job security due to a view that the future of data science work will be a collaboration between humans and AI systems, in which both automation and human expertise are indispensable.
To understand how end-users conceptualize consequences of cyber security attacks, we performed a card sorting study, a well-known technique in Cognitive Sciences, where participants were free to group the given consequences of chosen cyber attacks in to as many categories as they wished using rationales they see fit. The results of the open card sorting study showed a large amount of inter-participant variation making the research team wonder how the consequences of security attacks were comprehended by the participants. As an exploration of whether it is possible to explain users mental model and behavior through Artificial Intelligence (AI) techniques, the research team compared the card sorting data with the outputs of a number of Natural Language Processing (NLP) techniques with the goal of understanding how participants perceived and interpreted the consequences of cyber attacks written in natural languages. The results of the NLP-based exploration methods revealed an interesting observation implying that participants had mostly employed checking individual keywords in each sentence to group cyber attack consequences together and less considered the semantics behind the description of consequences of cyber attacks. The results reported in this paper are seemingly useful and important for cyber attacks comprehension from users perspectives. To the best of our knowledge, this paper is the first introducing the use of AI techniques in explaining and modeling users behavior and their perceptions about a context. The novel idea introduced here is about explaining users using AI.
Machine learning models are increasingly integrated into societally critical applications such as recidivism prediction and medical diagnosis, thanks to their superior predictive power. In these applications, however, full automation is often not des ired due to ethical and legal concerns. The research community has thus ventured into developing interpretable methods that explain machine predictions. While these explanations are meant to assist humans in understanding machine predictions and thereby allowing humans to make better decisions, this hypothesis is not supported in many recent studies. To improve human decision-making with AI assistance, we propose future directions for closing the gap between the efficacy of explanations and improvement in human performance.
220 - James P. Bagrow 2018
Non-experts have long made important contributions to machine learning (ML) by contributing training data, and recent work has shown that non-experts can also help with feature engineering by suggesting novel predictive features. However, non-experts have only contributed features to prediction tasks already posed by experienced ML practitioners. Here we study how non-experts can design prediction tasks themselves, what types of tasks non-experts will design, and whether predictive models can be automatically trained on data sourced for their tasks. We use a crowdsourcing platform where non-experts design predictive tasks that are then categorized and ranked by the crowd. Crowdsourced data are collected for top-ranked tasks and predictive models are then trained and evaluated automatically using those data. We show that individuals without ML experience can collectively construct useful datasets and that predictive models can be learned on these datasets, but challenges remain. The prediction tasks designed by non-experts covered a broad range of domains, from politics and current events to health behavior, demographics, and more. Proper instructions are crucial for non-experts, so we also conducted a randomized trial to understand how different instructions may influence the types of prediction tasks being proposed. In general, understanding better how non-experts can contribute to ML can further leverage advances in Automatic ML and has important implications as ML continues to drive workplace automation.
Human and AI are increasingly interacting and collaborating to accomplish various complex tasks in the context of diverse application domains (e.g., healthcare, transportation, and creative design). Two dynamic, learning entities (AI and human) have distinct mental model, expertise, and ability; such fundamental difference/mismatch offers opportunities for bringing new perspectives to achieve better results. However, this mismatch can cause unexpected failure and result in serious consequences. While recent research has paid much attention to enhancing interpretability or explainability to allow machine to explain how it makes a decision for supporting humans, this research argues that there is urging the need for both human and AI should develop specific, corresponding ability to interact and collaborate with each other to form a human-AI team to accomplish superior results. This research introduces a conceptual framework called Co-Learning, in which people can learn with/from and grow with AI partners over time. We characterize three key concepts of co-learning: mutual understanding, mutual benefits, and mutual growth for facilitating human-AI collaboration on complex problem solving. We will present proof-of-concepts to investigate whether and how our approach can help human-AI team to understand and benefit each other, and ultimately improve productivity and creativity on creative problem domains. The insights will contribute to the design of Human-AI collaboration.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا