ﻻ يوجد ملخص باللغة العربية
Automatic speaker verification systems are vulnerable to audio replay attacks which bypass security by replaying recordings of authorized speakers. Replay attack detection (RA) detection systems built upon Residual Neural Networks (ResNet)s have yielded astonishing results on the public benchmark ASVspoof 2019 Physical Access challenge. With most teams using fine-tuned feature extraction pipelines and model architectures, the generalizability of such systems remains questionable though. In this work, we analyse the effect of discriminative feature learning in a multi-task learning (MTL) setting can have on the generalizability and discriminability of RA detection systems. We use a popular ResNet architecture optimized by the cross-entropy criterion as our baseline and compare it to the same architecture optimized by MTL using Siamese Neural Networks (SNN). It can be shown that SNN outperform the baseline by relative 26.8 % Equal Error Rate (EER). We further enhance the models architecture and demonstrate that SNN with additional reconstruction loss yield another significant improvement of relative 13.8 % EER.
An attacker may use a variety of techniques to fool an automatic speaker verification system into accepting them as a genuine user. Anti-spoofing methods meanwhile aim to make the system robust against such attacks. The ASVspoof 2017 Challenge focuse
In this study, we analyze the role of various categories of subsidiary information in conducting replay attack spoofing detection: `Room Size, `Reverberation, `Speaker-to-ASV distance, `Attacker-to-Speaker distance, and `Replay Device Quality. As a m
Weakly Labelled learning has garnered lot of attention in recent years due to its potential to scale Sound Event Detection (SED) and is formulated as Multiple Instance Learning (MIL) problem. This paper proposes a Multi-Task Learning (MTL) framework
Robust voice activity detection (VAD) is a challenging task in low signal-to-noise (SNR) environments. Recent studies show that speech enhancement is helpful to VAD, but the performance improvement is limited. To address this issue, here we propose a
This paper introduces StutterNet, a novel deep learning based stuttering detection capable of detecting and identifying various types of disfluencies. Most of the existing work in this domain uses automatic speech recognition (ASR) combined with lang