ﻻ يوجد ملخص باللغة العربية
In this study, we analyze the role of various categories of subsidiary information in conducting replay attack spoofing detection: `Room Size, `Reverberation, `Speaker-to-ASV distance, `Attacker-to-Speaker distance, and `Replay Device Quality. As a means of analyzing subsidiary information, we use two frameworks to either subtract or include a category of subsidiary information to the code extracted from a deep neural network. For subtraction, we utilize an adversarial process framework which makes the code orthogonal to the basis vectors of the subsidiary information. For addition, we utilize the multi-task learning framework to include subsidiary information to the code. All experiments are conducted using the ASVspoof 2019 physical access scenario with the provided meta data. Through the analysis of the result of the two approaches, we conclude that various categories of subsidiary information does not reside enough in the code when the deep neural network is trained for binary classification. Explicitly including various categories of subsidiary information through the multi-task learning framework can help improve performance in closed set condition.
Automatic speaker verification systems are vulnerable to audio replay attacks which bypass security by replaying recordings of authorized speakers. Replay attack detection (RA) detection systems built upon Residual Neural Networks (ResNet)s have yiel
A number of studies have successfully developed speaker verification or presentation attack detection systems. However, studies integrating the two tasks remain in the preliminary stages. In this paper, we propose two approaches for building an integ
An attacker may use a variety of techniques to fool an automatic speaker verification system into accepting them as a genuine user. Anti-spoofing methods meanwhile aim to make the system robust against such attacks. The ASVspoof 2017 Challenge focuse
In this study, we concentrate on replacing the process of extracting hand-crafted acoustic feature with end-to-end DNN using complementary high-resolution spectrograms. As a result of advance in audio devices, typical characteristics of a replayed sp
The threat of spoofing can pose a risk to the reliability of automatic speaker verification. Results from the bi-annual ASVspoof evaluations show that effective countermeasures demand front-ends designed specifically for the detection of spoofing art