ترغب بنشر مسار تعليمي؟ اضغط هنا

Invisible Backdoor Attacks on Deep Neural Networks via Steganography and Regularization

341   0   0.0 ( 0 )
 نشر من قبل Shaofeng Li
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Deep neural networks (DNNs) have been proven vulnerable to backdoor attacks, where hidden features (patterns) trained to a normal model, which is only activated by some specific input (called triggers), trick the model into producing unexpected behavior. In this paper, we create covert and scattered triggers for backdoor attacks, invisible backdoors, where triggers can fool both DNN models and human inspection. We apply our invisible backdoors through two state-of-the-art methods of embedding triggers for backdoor attacks. The first approach on Badnets embeds the trigger into DNNs through steganography. The second approach of a trojan attack uses two types of additional regularization terms to generate the triggers with irregular shape and size. We use the Attack Success Rate and Functionality to measure the performance of our attacks. We introduce two novel definitions of invisibility for human perception; one is conceptualized by the Perceptual Adversarial Similarity Score (PASS) and the other is Learned Perceptual Image Patch Similarity (LPIPS). We show that the proposed invisible backdoors can be fairly effective across various DNN models as well as four datasets MNIST, CIFAR-10, CIFAR-100, and GTSRB, by measuring their attack success rates for the adversary, functionality for the normal users, and invisibility scores for the administrators. We finally argue that the proposed invisible backdoor attacks can effectively thwart the state-of-the-art trojan backdoor detection approaches, such as Neural Cleanse and TABOR.

قيم البحث

اقرأ أيضاً

This work provides the community with a timely comprehensive review of backdoor attacks and countermeasures on deep learning. According to the attackers capability and affected stage of the machine learning pipeline, the attack surfaces are recognize d to be wide and then formalized into six categorizations: code poisoning, outsourcing, pretrained, data collection, collaborative learning and post-deployment. Accordingly, attacks under each categorization are combed. The countermeasures are categorized into four general classes: blind backdoor removal, offline backdoor inspection, online backdoor inspection, and post backdoor removal. Accordingly, we review countermeasures, and compare and analyze their advantages and disadvantages. We have also reviewed the flip side of backdoor attacks, which are explored for i) protecting intellectual property of deep learning models, ii) acting as a honeypot to catch adversarial example attacks, and iii) verifying data deletion requested by the data contributor.Overall, the research on defense is far behind the attack, and there is no single defense that can prevent all types of backdoor attacks. In some cases, an attacker can intelligently bypass existing defenses with an adaptive attack. Drawing the insights from the systematic review, we also present key areas for future research on the backdoor, such as empirical security evaluations from physical trigger attacks, and in particular, more efficient and practical countermeasures are solicited.
The vulnerability of deep neural networks (DNNs) to adversarial examples is well documented. Under the strong white-box threat model, where attackers have full access to DNN internals, recent work has produced continual advancements in defenses, ofte n followed by more powerful attacks that break them. Meanwhile, research on the more realistic black-box threat model has focused almost entirely on reducing the query-cost of attacks, making them increasingly practical for ML models already deployed today. This paper proposes and evaluates Blacklight, a new defense against black-box adversarial attacks. Blacklight targets a key property of black-box attacks: to compute adversarial examples, they produce sequences of highly similar images while trying to minimize the distance from some initial benign input. To detect an attack, Blacklight computes for each query image a compact set of one-way hash values that form a probabilistic fingerprint. Variants of an image produce nearly identical fingerprints, and fingerprint generation is robust against manipulation. We evaluate Blacklight on 5 state-of-the-art black-box attacks, across a variety of models and classification tasks. While the most efficient attacks take thousands or tens of thousands of queries to complete, Blacklight identifies them all, often after only a handful of queries. Blacklight is also robust against several powerful countermeasures, including an optimal black-box attack that approximates white-box attacks in efficiency. Finally, Blacklight significantly outperforms the only known alternative in both detection coverage of attack queries and resistance against persistent attackers.
162 - Mingfu Xue , Can He , Shichang Sun 2021
Deep neural networks (DNN) have been widely deployed in various applications. However, many researches indicated that DNN is vulnerable to backdoor attacks. The attacker can create a hidden backdoor in target DNN model, and trigger the malicious beha viors by submitting specific backdoor instance. However, almost all the existing backdoor works focused on the digital domain, while few studies investigate the backdoor attacks in real physical world. Restricted to a variety of physical constraints, the performance of backdoor attacks in the real physical world will be severely degraded. In this paper, we propose a robust physical backdoor attack method, PTB (physical transformations for backdoors), to implement the backdoor attacks against deep learning models in the real physical world. Specifically, in the training phase, we perform a series of physical transformations on these injected backdoor instances at each round of model training, so as to simulate various transformations that a backdoor may experience in real world, thus improves its physical robustness. Experimental results on the state-of-the-art face recognition model show that, compared with the backdoor methods that without PTB, the proposed attack method can significantly improve the performance of backdoor attacks in real physical world. Under various complex physical conditions, by injecting only a very small ratio (0.5%) of backdoor instances, the attack success rate of physical backdoor attacks with the PTB method on VGGFace is 82%, while the attack success rate of backdoor attacks without the proposed PTB method is lower than 11%. Meanwhile, the normal performance of the target DNN model has not been affected.
176 - Siyue Wang , Xiao Wang , Pu Zhao 2018
Deep neural networks (DNNs) are known vulnerable to adversarial attacks. That is, adversarial examples, obtained by adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels. This work p rovides a solution to hardening DNNs under adversarial attacks through defensive dropout. Besides using dropout during training for the best test accuracy, we propose to use dropout also at test time to achieve strong defense effects. We consider the problem of building robust DNNs as an attacker-defender two-player game, where the attacker and the defender know each others strategies and try to optimize their own strategies towards an equilibrium. Based on the observations of the effect of test dropout rate on test accuracy and attack success rate, we propose a defensive dropout algorithm to determine an optimal test dropout rate given the neural network model and the attackers strategy for generating adversarial examples.We also investigate the mechanism behind the outstanding defense effects achieved by the proposed defensive dropout. Comparing with stochastic activation pruning (SAP), another defense method through introducing randomness into the DNN model, we find that our defensive dropout achieves much larger variances of the gradients, which is the key for the improved defense effects (much lower attack success rate). For example, our defensive dropout can reduce the attack success rate from 100% to 13.89% under the currently strongest attack i.e., C&W attack on MNIST dataset.
Recent research shows deep neural networks are vulnerable to different types of attacks, such as adversarial attack, data poisoning attack and backdoor attack. Among them, backdoor attack is the most cunning one and can occur in almost every stage of deep learning pipeline. Therefore, backdoor attack has attracted lots of interests from both academia and industry. However, most existing backdoor attack methods are either visible or fragile to some effortless pre-processing such as common data transformations. To address these limitations, we propose a robust and invisible backdoor attack called Poison Ink. Concretely, we first leverage the image structures as target poisoning areas, and fill them with poison ink (information) to generate the trigger pattern. As the image structure can keep its semantic meaning during the data transformation, such trigger pattern is inherently robust to data transformations. Then we leverage a deep injection network to embed such trigger pattern into the cover image to achieve stealthiness. Compared to existing popular backdoor attack methods, Poison Ink outperforms both in stealthiness and robustness. Through extensive experiments, we demonstrate Poison Ink is not only general to different datasets and network architectures, but also flexible for different attack scenarios. Besides, it also has very strong resistance against many state-of-the-art defense techniques.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا