ﻻ يوجد ملخص باللغة العربية
We investigate the demonstration and quantification of the strong coupling between excitons and guided photons in a GaN slab waveguide. The dispersions of waveguide polaritons are measured from T=6~K to 300~K through gratings. They are carefully analyzed within four models based on different assumptions, in order to assess the strong coupling regime. We prove that the guided photons and excitons are strongly coupled at all investigated temperatures, with a small $(11 %)$ dependence on the temperature. However the values of the Rabi splitting strongly vary among the four models: the coupled oscillator model over-estimates the coupling; the analytical Elliott-Tanguy model precisely describes the dielectric susceptibility of GaN near the excitonic transition, leading to a Rabi splitting equal to $82 pm 10 meV$ for TE0 modes; the experimental ellipsometry-based model leads to smaller values of $55 pm 6 meV.$ We evidence that for waveguides including active layers with large oscillator strengths, as required for room-temperature polaritonic devices, a strong bending of the modes dispersion is not necessarily the signature of the strong-coupling, which requires for its reliable assessment a precise analysis of the material dielectric susceptibility.
We study exciton-polaritons in a two-dimensional Lieb lattice of micropillars. The energy spectrum of the system features two flat bands formed from $S$ and $P_{x,y}$ photonic orbitals, into which we trigger bosonic condensation under high power exci
We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity cont
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton-phonon coupling plays a key role in determining the (opto)electronic properties of th
Due to high binding energy and oscillator strength, excitons in thin flakes of transition metal dichalcogenides constitute a perfect foundation for realizing a strongly coupled light-matter system. In this paper we investigate mono- and few-layer WSe
Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg