ﻻ يوجد ملخص باللغة العربية
We present a method to implement 3-dimensional polariton confinement with in-situ spectral tuning of the cavity mode. Our tunable microcavity is a hybrid system consisting of a bottom semiconductor distributed Bragg reflector (DBR) with a cavity containing quantum wells (QWs) grown on top and a dielectric concave DBR separated by a micrometer sized gap. Nanopositioners allow independent positioning of the two mirrors and the cavity mode energy can be tuned by controlling the distance between them. When close to resonance we observe a characteristic anticrossing between the cavity modes and the QW exciton demonstrating strong coupling. For the smallest radii of curvature concave mirrors of 5.6 $mu$m and 7.5 $mu$m real-space polariton imaging reveals submicron polariton confinement due to the hemispherical cavity geometry.
Observations of polariton condensation in semiconductor microcavities suggest that polaritons can be exploited as a novel type of laser with low input-power requirements. The low-excitation regime is approximately equivalent to thermal equilibrium, a
We discuss the observability of strong coupling between single photons in semiconductor microcavities coupled by a chi(2) nonlinearity. We present two schemes and analyze the feasibility of their practical implementation in three systems: photonic cr
Photoinduced Kerr rotation by more than $pi /2$ radians is demonstrated in planar quantum well microcavity in the strong coupling regime. This result is close to the predicted theoretical maximum of $pi $. It is achieved by engineering microcavity pa
Polariton emission from optical cavities integrated with various luminophores has been extensively studied recently due to the wide variety of possible applications in photonics, particularly promising in terms of fabrication of low-threshold sources
We present a model for exciton-plasmon coupling based on an energy exchange mechanism between quantum emitters (QE) and localized surface plasmons in metal-dielectric structures. Plasmonic correlations between QEs give rise to a collective state exch