ﻻ يوجد ملخص باللغة العربية
Periodic incorporation of quantum wells inside a one--dimensional Bragg structure is shown to enhance coherent coupling of excitons to the electromagnetic Bloch waves. We demonstrate strong coupling of quantum well excitons to photonic crystal Bragg modes at the edge of the photonic bandgap, which gives rise to mixed Bragg polariton eigenstates. The resulting Bragg polariton branches are in good agreement with the theory and allow demonstration of Bragg polariton parametric amplification.
We propose a novel mechanism for designing quantum hyperbolic metamaterials with use of semi-conductor Bragg mirrors containing periodically arrangedquantum wells. The hyperbolic dispersion of exciton-polariton modes is realized near the top of the f
We present a simple method to create an in-plane lateral potential in a semiconductor microcavity using a metal thin-film. Two types of potential are produced: a circular aperture and a one-dimensional (1D) periodic grating pattern. The amplitude of
Semiconductor microcavities offer a unique system to investigate the physics of weakly interacting bosons. Their elementary excitations, polaritons--a mixture of excitons and photons--behave, in the low density limit, as bosons that can undergo a pha
Polariton emission from optical cavities integrated with various luminophores has been extensively studied recently due to the wide variety of possible applications in photonics, particularly promising in terms of fabrication of low-threshold sources
We investigate the demonstration and quantification of the strong coupling between excitons and guided photons in a GaN slab waveguide. The dispersions of waveguide polaritons are measured from T=6~K to 300~K through gratings. They are carefully anal