ﻻ يوجد ملخص باللغة العربية
The search for topological states in strongly correlated electron systems has renewed the interest in the Kondo insulator SmB6. One of the most intriguing previous results was an anomalous electron spin resonance spectrum in Gd-doped SmB6. This spectrum was attributed to Gd2+ ions because it could be very well decribed by a model considering a change in the valence from Gd3+ to Gd2+, a dynamic Jahn-Teller effect and a 4f7 5d1 ground state in the Hamiltonian. In our work, we have revisited this scenario using electron spin resonance and energy dispersive X-ray spectroscopy measurements. Our results suggest that the resonance is produced by Gd2+ ions; however the resonance stems from an extrinsic oxide impurity phase that lies on the surface of the crystal.
The CeIn3-xSnx cubic heavy fermion system presents an antiferromagnetic transition at T_N = 10 K, for x = 0, that decreases continuously down to 0 K upon Sn substitution at a critical concentration of x_c ~ 0.65. In the vicinity of T_N -> 0 the syste
Pr 4f electronic states in Pr-based filled skutterudites PrT4X12(T=Fe and Ru; X=P and Sb) have been studied by high-resolution bulk-sensitive Pr 3d-4f resonance photoemission. A very strong spectral intensity is observed just below the Fermi level in
Materials containing non-Kramers magnetic ions can show unusual quantum excitations because of the exact mapping of the two-singlet crystal-field ground state to a quantum model of Ising spins in a transverse magnetic field. Here, we model the magnet
The proximity effect at the interface between a topological insulator (TI) and a superconductor is predicted to give rise to chiral topological superconductivity and Majorana fermion excitations. In most TIs studied to date, however, the conducting b
We calculate the carrier density dependent ground state properties of graphene in the presence of random charged impurities in the substrate taking into account disorder and interaction effects non-perturbatively on an equal footing in a self-consist