ﻻ يوجد ملخص باللغة العربية
The CeIn3-xSnx cubic heavy fermion system presents an antiferromagnetic transition at T_N = 10 K, for x = 0, that decreases continuously down to 0 K upon Sn substitution at a critical concentration of x_c ~ 0.65. In the vicinity of T_N -> 0 the system shows non-Fermi liquid behavior due to antiferromagnetic critical fluctuations. For a high Sn content, x > 2.2, intermediate valence effects are present. In this work we show that Gd3+-doped electron spin resonance (ESR) probes a change in the character of the Ce 4f electron, as a function of Sn substitution. The Gd3+ ESR results indicate a transition of the Ce 4f spin behavior from localized to itinerant. Near the quantum critical point, on the antiferromagnetic side of the magnetic phase diagram, both localized and itinerant behaviors coexist.
High-resolution photoemission spectroscopy and realistic ab-initio calculations have been employed to analyze the onset and progression of d-sp hybridization in Fe impurities deposited on alkali metal films. The interplay between delocalization, medi
The LaIn3-xSnx alloy system is composed of superconducting Pauli paramagnets. For LaIn3 the superconducting critical temperature T_c is approximately 0.7 K and it shows an oscillatory dependence as a function of Sn substitution, presenting its highes
The search for topological states in strongly correlated electron systems has renewed the interest in the Kondo insulator SmB6. One of the most intriguing previous results was an anomalous electron spin resonance spectrum in Gd-doped SmB6. This spect
We apply a recently developed quasiparticle self-consistent $GW$ method (QSGW) to Gd, Er, EuN, GdN, ErAs, YbN and GdAs. We show that QSGW combines advantages separately found in conventional $GW$ and LDA+$U$ theory, in a simple and fully emph{ab init
Cerium (Ce)-based heavy-fermion materials have a characteristic double-peak structure (mid-IR peak) in the optical conductivity [$sigma(omega)$] spectra originating from the strong conduction ($c$)--$f$ electron hybridization. To clarify the behavior