ﻻ يوجد ملخص باللغة العربية
Linear-dichroism is an important tool to characterize the transmission matrix and determine the crystal or orbital orientation in a material. In order to gain high resolution mapping of the transmission properties of such materials, we introduce the linear-dichroism scattering model in ptychographic imaging, and then develop an efficient two-stage reconstruction algorithm. Using proposed algorithm, the dichroic transmission matrix without an analyzer can be recovered by using ptychography measurements with as few as three different polarization angles, with the help of an empty region to remove phase ambiguities.
Biominerals such as seashells, corals skeletons, bone, and enamel are optically anisotropic crystalline materials with unique nano- and micro-scale organization that translates into exceptional macroscopic mechanical properties, providing inspiration
Imaging the magnetic structure of a material is essential to understanding the influence of the physical and chemical microstructure on its magnetic properties. Magnetic imaging techniques, however, have up to now been unable to probe 3D micrometer-s
Ptychography is a promising phase retrieval technique for visible light, X-ray and electron beams. Conventional ptychography reconstructs the amplitude and phase of an object light from a set of the diffraction intensity patterns obtained by the X-Y
As a promising lensless imaging method for distance objects, intensity interferometry imaging (III) had been suffering from the unreliable phase retrieval process, hindering the development of III for decades. Recently, the introduction of the ptycho
Leukocyte differential test is a widely performed clinical procedure for screening infectious diseases. Existing hematology analyzers require labor-intensive work and a panel of expensive reagents. Here we report an artificial-intelligence enabled re