ﻻ يوجد ملخص باللغة العربية
Leukocyte differential test is a widely performed clinical procedure for screening infectious diseases. Existing hematology analyzers require labor-intensive work and a panel of expensive reagents. Here we report an artificial-intelligence enabled reagent-free imaging hematology analyzer (AIRFIHA) modality that can accurately classify subpopulations of leukocytes with minimal sample preparation. AIRFIHA is realized through training a two-step residual neural network using label-free images of separated leukocytes acquired from a custom-built quantitative phase microscope. We validated the performance of AIRFIHA in randomly selected test set and cross-validated it across all blood donors. AIRFIHA outperforms current methods in classification accuracy, especially in B and T lymphocytes, while preserving the natural state of cells. It also shows a promising potential in differentiating CD4 and CD8 cells. Owing to its easy operation, low cost, and strong discerning capability of complex leukocyte subpopulations, we envision AIRFIHA is clinically translatable and can also be deployed in resource-limited settings, e.g., during pandemic situations for the rapid screening of infectious diseases.
With the recent advances of the Internet of Things, and the increasing accessibility of ubiquitous computing resources and mobile devices, the prevalence of rich media contents, and the ensuing social, economic, and cultural changes, computing techno
Artificial Intelligence (AI) is rapidly becoming integrated into military Command and Control (C2) systems as a strategic priority for many defence forces. The successful implementation of AI is promising to herald a significant leap in C2 agility th
Artificial intelligence (AI)-based methods are showing promise in multiple medical-imaging applications. Thus, there is substantial interest in clinical translation of these methods, requiring in turn, that they be evaluated rigorously. In this paper
The rise of Artificial Intelligence (AI) will bring with it an ever-increasing willingness to cede decision-making to machines. But rather than just giving machines the power to make decisions that affect us, we need ways to work cooperatively with A
Positron emission tomography, like many other tomographic imaging modalities, relies on an image reconstruction step to produce cross-sectional images from projection data. Detection and localization of the back-to-back annihilation photons produced