ﻻ يوجد ملخص باللغة العربية
Recently theorized hybrid II-IV-N{_2} / III-N heterostructures, based on current commercialized (In,Ga)N devices, are predicted to significantly advance the design space of highly efficient optoelectronics in the visible spectrum, yet there are few epitaxial studies of II-IV-N{_2} materials. In this work, we present heteroepitaxial ZnGeN{_2} grown on GaN buffers and AlN templates. We demonstrate that a GaN nucleating surface is crucial for increasing the ZnGeN{_2} crystallization rate to combat Zn desorption, extending the stoichiometric growth window from 215 {degree}C on AlN to 500 {degree}C on GaN buffers. Structural characterization reveals well crystallized films with threading dislocations extending from the GaN buffer. These films have a critical thickness for relaxation of 20 nm - 25 nm as determined by reflection high energy electron diffraction (RHEED) and cross-sectional scanning electron microscopy (SEM). The films exhibit a cation-disordered wurtzite structure, with lattice constants a = 3.216 {AA} {pm} 0.004 {AA} and c = 5.215 {AA} {pm} 0.005 {AA} determined by RHEED and X-ray diffraction (XRD). This work demonstrates a significant step towards the development of hybrid ZnGeN{_2}-GaN integrated devices.
RF plasma assisted MBE growth of Scandium Nitride (ScN) thin films on GaN (0001)/SiC, AlN (0001)/Al2O3 and on 6H-SiC (0001) hexagonal substrates is found to lead to a face centered cubic (rock-salt) crystal structure with (111) out-of-plane orientati
We demonstrate the self-assembled growth of vertically aligned GaN nanowire ensembles on a flexible Ti foil by plasma-assisted molecular beam epitaxy. The analysis of single nanowires by transmission electron microscopy reveals that they are single c
We present a detailed study of the growth of the tetragonal polymorph of antiferromagnetic CuMnAs by the molecular beam epitaxy technique. We explore the parameter space of growth conditions and their effect on the microstructural and transport prope
We investigate the influence of modified growth conditions during the spontaneous formation of GaN nanowires on Si(111) in plasma-assisted molecular beam epitaxy. We find that a two-step growth approach, where the substrate temperature is increased d
We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by x-ray diffraction (XRD) while atomic forc