ﻻ يوجد ملخص باللغة العربية
We present a detailed study of the growth of the tetragonal polymorph of antiferromagnetic CuMnAs by the molecular beam epitaxy technique. We explore the parameter space of growth conditions and their effect on the microstructural and transport properties of the material. We identify its typical structural defects and compare the properties of epitaxial CuMnAs layers grown on GaP, GaAs and Si substrates. Finally, we investigate the correlation between the crystalline quality of CuMnAs and its performance in terms of electrically induced resistance switching.
The Pd, and Pt based ABO2 delafossites are a unique class of layered, triangular oxides with 2D electronic structure and a large conductivity that rivals the noble metals. Here, we report successful growth of the metallic delafossite PdCoO2 by molecu
We report growth of CuMnSb thin films by molecular beam epitaxy on InAs(001) substrates. The CuMnSb layers are compressively strained ($0.6~text{%}$) due to lattice mismatch. The thin films have a $omega$ full width half max of $7.7^{}$ according to
We report on the growth of epitaxial ZnO thin films and ZnO based heterostructures on sapphire substrates by laser molecular beam epitaxy (MBE). We first discuss some recent developments in laser-MBE such as flexible ultra-violet laser beam optics, i
We report on the growth of epitaxial Sr2RuO4 films using a hybrid molecular beam epitaxy approach in which a volatile precursor containing RuO4 is used to supply ruthenium and oxygen. The use of the precursor overcomes a number of issues encountered
A seemingly simple oxide with a rutile structure, RuO2 has been shown to possess several intriguing properties ranging from strain-stabilized superconductivity to a strong catalytic activity. Much interest has arisen surrounding the controlled synthe