ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular beam epitaxy growth of SrO buffer layers on graphite and graphene for the integration of complex oxides

90   0   0.0 ( 0 )
 نشر من قبل Roland Kawakami
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the successful growth of high-quality SrO films on highly-ordered pyrolytic graphite (HOPG) and single-layer graphene by molecular beam epitaxy. The SrO layers have (001) orientation as confirmed by x-ray diffraction (XRD) while atomic force microscopy measurements show continuous pinhole-free films having rms surface roughness of <1.5 {AA}. Transport measurements of exfoliated graphene after SrO deposition show a strong dependence between the Dirac point and Sr oxidation. Subsequently, the SrO is leveraged as a buffer layer for more complex oxide integration via the demonstration of (001) oriented SrTiO3 grown atop a SrO/HOPG stack.



قيم البحث

اقرأ أيضاً

The growth of single layer graphene nanometer size domains by solid carbon source molecular beam epitaxy on hexagonal boron nitride (h-BN) flakes is demonstrated. Formation of single-layer graphene is clearly apparent in Raman spectra which display s harp optical phonon bands. Atomic-force microscope images and Raman maps reveal that the graphene grown depends on the surface morphology of the h-BN substrates. The growth is governed by the high mobility of the carbon atoms on the h-BN surface, in a manner that is consistent with van der Waals epitaxy. The successful growth of graphene layers depends on the substrate temperature, but is independent of the incident flux of carbon atoms.
We report the structural and optical properties of molecular beam epitaxy (MBE) grown 2-dimensional (2D) material molybdenum diselenide (MoSe2) on graphite, CaF2 and epitaxial graphene. Extensive characterizations reveal that 2H- MoSe2 grows by van-d er-Waals epitaxy on all 3 substrates with a preferred crystallographic orientation and a Mo:Se ratio of 1:2. Photoluminescence at room temperature (~1.56 eV) is observed in monolayer MoSe2 on both CaF2 and epitaxial graphene. The band edge absorption is very sharp, <60 meV over 3 decades. Overcoming the observed small grains by promoting mobility of Mo atoms would make MBE a powerful technique to achieve high quality 2D materials and heterostructures.
We report epitaxial growth of vanadium diselenide (VSe$_2$) thin films in the octahedrally-coordinated (1T) structure on GaAs(111)B substrates by molecular beam epitaxy. Film thickness from a single monolayer (ML) up to 30 ML is demonstrated. Structu ral and chemical studies using by x-ray diffraction, transmission electron microscopy, scanning tunneling microscopy and x-ray photoelectron spectroscopy indicate high quality thin films. Further studies show that monolayer VSe$_2$ films on GaAs are not air-stable and are susceptible to oxidation within a matter of hours, which indicates that a protective capping layer should be employed for device applications. This work demonstrates that VSe$_2$, a candidate van der Waals material for possible spintronic and electronic applications, can be integrated with III-V semiconductors via epitaxial growth for 2D/3D hybrid devices.
Two-dimensional crystals are an important class of materials for novel physics, chemistry, and engineering. Germanane (GeH), the germanium-based analogue of graphane (CH), is of particular interest due to its direct band gap and spin-orbit coupling. Here, we report the successful co-deposition growth of CaGe2 films on Ge(111) substrates by molecular beam epitaxy (MBE) and their subsequent conversion to germanane by immersion in hydrochloric acid. We find that the growth of CaGe2 occurs within an adsorption-limited growth regime, which ensures stoichiometry of the film. We utilize in situ reflection high energy electron diffraction (RHEED) to explore the growth temperature window and find the best RHEED patterns at 750 {deg}C. Finally, the CaGe2 films are immersed in hydrochloric acid to convert the films to germanane. Auger electron spectroscopy of the resulting film indicates the removal of Ca and RHEED patterns indicate a single-crystal film with in-plane orientation dictated by the underlying Ge(111) substrate. X-ray diffraction and Raman spectroscopy indicate that the resulting films are indeed germanane. Ex situ atomic force microscopy (AFM) shows that the grain size of the germanane is on the order of a few micrometers, being primarily limited by terraces induced by the miscut of the Ge substrate. Thus, optimization of the substrate could lead to the long-term goal of large area germanane films.
Recently theorized hybrid II-IV-N{_2} / III-N heterostructures, based on current commercialized (In,Ga)N devices, are predicted to significantly advance the design space of highly efficient optoelectronics in the visible spectrum, yet there are few e pitaxial studies of II-IV-N{_2} materials. In this work, we present heteroepitaxial ZnGeN{_2} grown on GaN buffers and AlN templates. We demonstrate that a GaN nucleating surface is crucial for increasing the ZnGeN{_2} crystallization rate to combat Zn desorption, extending the stoichiometric growth window from 215 {degree}C on AlN to 500 {degree}C on GaN buffers. Structural characterization reveals well crystallized films with threading dislocations extending from the GaN buffer. These films have a critical thickness for relaxation of 20 nm - 25 nm as determined by reflection high energy electron diffraction (RHEED) and cross-sectional scanning electron microscopy (SEM). The films exhibit a cation-disordered wurtzite structure, with lattice constants a = 3.216 {AA} {pm} 0.004 {AA} and c = 5.215 {AA} {pm} 0.005 {AA} determined by RHEED and X-ray diffraction (XRD). This work demonstrates a significant step towards the development of hybrid ZnGeN{_2}-GaN integrated devices.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا