ﻻ يوجد ملخص باللغة العربية
The relativistic quantum dynamics of the generalized Klein-Gordon (KG) oscillator having position-dependent mass in the G{o}del-type space-time is investigated. We have presented the generalized KG oscillator in this space-time, and discussed the effect of Cornell potential and linear potential for our considered system. The modification from the parameters of position-dependent mass and characterizing the space-time for the energy spectrums are presented.
The effective mass Klein-Gordon equation in one dimension for the Woods-Saxon potential is solved by using the Nikiforov-Uvarov method. Energy eigenvalues and the corresponding eigenfunctions are computed. Results are also given for the constant mass case.
The energy eigenvalues and the corresponding eigenfunctions of the one-dimensional Klein-Gordon equation with q-parameter Poschl-Teller potential are analytically obtained within the position-dependent mass formalism. The parametric generalization of
We study the $(1+1)$ dimensional generalized Dirac oscillator with a position-dependent mass. In particular, bound states with zero energy as well as non zero energy have been obtained for suitable choices of the mass function/oscillator interaction.
The Klein-Gordon equation is solved approximately for the Hulth{e}n potential for any angular momentum quantum number $ell$ with the position-dependent mass. Solutions are obtained reducing the Klein-Gordon equation into a Schr{o}dinger-like differen
The dynamics of a particle in an expanding cavity is investigated in the Klein-Gordon framework in a regime in which the single particle picture remains valid. The cavity expansion represents a time-dependent boundary condition for the relativistic w