ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tale of Two Grains: impact of grain size on ring formation via nonideal MHD processes

192   0   0.0 ( 0 )
 نشر من قبل Xiao Hu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Xiao Hu




اسأل ChatGPT حول البحث

Substructures in PPDs, whose ubiquity was unveiled by recent ALMA observations, are widely discussed regarding their possible origins. We carry out global full magnetohydrodynamic (MHD) simulations in axisymmetry, coupled with self-consistent ray-tracing radiative transfer, thermochemistry, and non-ideal MHD diffusivities. The abundance profiles of grains are also calculated based on the global dust evolution calculation, including sintering effects. We found that dust size plays a crucial role in the ring formation around the snow lines of protoplanetary disks (PPDs) through the accretion process. Disk ionization structures and thus tensorial conductivities depend on the size of grains.When grains are significantly larger than PAHs, the non-ideal MHD conductivities change dramatically across each snow line of major volatiles, leading to a sudden change of the accretion process across the snow lines and the subsequent formation of gaseous rings/gaps there. On the other hand,the variations of conductivities are a lot less with only PAH sized grains in disks and then these disks retain smoother radial density profiles across snow lines.

قيم البحث

اقرأ أيضاً

80 - Beibei Liu , Jianghui Ji 2020
The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.
Turbulence is the dominant source of collisional velocities for grains with a wide range of sizes in protoplanetary disks. So far, only Kolmogorov turbulence has been considered for calculating grain collisional velocities, despite the evidence that turbulence in protoplanetary disks may be non-Kolmogorov. In this work, we present calculations of grain collisional velocities for arbitrary turbulence models characterized by power-law spectra and determined by three dimensionless parameters: the slope of the kinetic energy spectrum, the slope of the auto-correlation time, and the Reynolds number. The implications of our results are illustrated by numerical simulations of the grain size evolution for different turbulence models. We find that for the modeled cases of the Iroshnikov-Kraichnan turbulence and the turbulence induced by the magneto-rotational instabilities, collisional velocities of small grains are much larger than those for the standard Kolmogorov turbulence. This leads to faster grain coagulation in the outer regions of protoplanetary disks, resulting in rapid increase of dust opacity in mm-wavelength and possibly promoting planet formation in very young disks.
356 - S. Gavino , A. Dutrey , V. Wakelam 2021
Grain surface chemistry is key to the composition of protoplanetary disks around young stars. The temperature of grains depends on their size. We evaluate the impact of this temperature dependence on the disk chemistry. We model a moderately massive disk with 16 different grain sizes. We use POLARIS to calculate the dust grain temperatures and the local UV flux. We model the chemistry using the 3-phase astrochemical code NAUTILUS. Photoprocesses are handled using frequency-dependent cross-sections, and a new method to account for self and mutual shielding. The multi-grain model outputs are compared to those of single-grain size models (0.1 $mu$m), with two different assumptions for their equivalent temperature. We find that the Langmuir-Hinshelwood (LH) mechanism at equilibrium temperature is not efficient to form H$_2$ at 3-4 scale heights ($H$), and adopt a parametric fit to a stochastic method to model H$_2$ formation instead. We find the molecular layer composition (1-3 $H$) to depend on the amount of remaining H atoms. Differences in molecular surface densities between single and multi-grain models are mostly due to what occurs above 1.5 $H$. At 100 au, models with colder grains produce H$_2$O and CH$_4$ ices in the midplane, and warmer ones produce more CO$_2$ ices, both allowing efficient depletion of C and O as soon as CO sticks on grain surfaces. Complex organic molecules (COMs) production is enhanced by the presence of warmer grains in the multi-grain models. Using a single grain model mimicking grain growth and dust settling fails to reproduce the complexity of gas-grain chemistry. Chemical models with a single grain size are sensitive to the adopted grain temperature, and cannot account for all expected effects. A spatial spread of the snowlines is expected to result from the ranges in grain temperature. The amplitude of the effects will depend on the dust disk mass.
We compute the desorption rate of icy mantles on dust grains as a function of the size and composition of both the grain and the mantle. We combine existing models of cosmic ray (CR) related desorption phenomena with a model of CR transport to accura tely calculate the desorption rates in dark regions of molecular clouds. We show that different desorption mechanisms dominate for grains of different sizes, and in different regions of the cloud. We then use these calculations to investigate a simple model of the growth of mantles, given a distribution of grain sizes. We find that modest variations of the desorption rate with grain size lead to a strong dependence of mantle thickness on grain size. Furthermore, we show that freeze-out is almost complete in the absence of an external UV field, even when photodesorption from CR produced UV is taken into consideration. Even at gas densities of $10^4$ ${rm cm^{-3}}$, less than 30% of the CO remains in the gas phase after $3times 10^5$ years for standard values of the CR ionization rate.
Despite its potential reactivity due to ring strain, ethylene oxide (c-C2H4O) is a complex molecule that seems to be stable under the physical conditions of an interstellar dense core; indeed it has been detected towards several high-mass star formin g regions with a column density of the order of 10e13cm-2 (Ikeda et al. 2001). To date, its observational abundances cannot be reproduced by chemical models and this may be due to the significant contribution played by its chemistry on grain surfaces. Recently, Ward and Price (2011) have performed experiments in order to investigate the surface formation of ethylene oxide starting with oxygen atoms and ethylene ice as reactants. We present a chemical model which includes the most recent experimental results from Ward and Price (2011) on the formation of c-C2H4O. We study the influence of the physical parameters of dense cores on the abundances of c-C2H4O. We verify that ethylene oxide can indeed be formed during the cold phase (when the ISM dense cores are formed), via addition of an oxygen atom across the C=C double bond of the ethylene molecule, and released by thermal desorption during the hot core phase. A qualitative comparison between our theoretical results and those from the observations shows that we are able to reproduce the abundances of ethylene oxide towards high-mass star-forming regions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا