ترغب بنشر مسار تعليمي؟ اضغط هنا

A Tale of Planet Formation: From Dust to Planets

81   0   0.0 ( 0 )
 نشر من قبل Beibei Liu
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The characterization of exoplanets and their birth protoplanetary disks has enormously advanced in the last decade. Benefitting from that, our global understanding of the planet formation processes has been substantially improved. In this review, we first summarize the cutting-edge states of the exoplanet and disk observations. We further present a comprehensive panoptic view of modern core accretion planet formation scenarios, including dust growth and radial drift, planetesimal formation by the streaming instability, core growth by planetesimal accretion and pebble accretion. We discuss the key concepts and physical processes in each growth stage and elaborate on the connections between theoretical studies and observational revelations. Finally, we point out the critical questions and future directions of planet formation studies.



قيم البحث

اقرأ أيضاً

291 - Gavin A. L. Coleman 2021
Planet formation models begin with proto-embryos and planetesimals already fully formed, missing out a crucial step, the formation of planetesimals/proto-embryos. In this work, we include prescriptions for planetesimal and proto-embryo formation aris ing from pebbles becoming trapped in short-lived pressure bumps, in thermally evolving viscous discs to examine the sizes and distributions of proto-embryos and planetesimals throughout the disc. We find that planetesimal sizes increase with orbital distance, from ~10 km close to the star to hundreds of kilometres further away. Proto-embryo masses are also found to increase with orbital radius, ranging from $10^{-6} M_{rm oplus}$ around the iceline, to $10^{-3} M_{rm oplus}$ near the orbit of Pluto. We include prescriptions for pebble and planetesimal accretion to examine the masses that proto-embryos can attain. Close to the star, planetesimal accretion is efficient due to small planetesimals, whilst pebble accretion is efficient where pebble sizes are fragmentation limited, but inefficient when drift dominated due to low accretion rates before the pebble supply diminishes. Exterior to the iceline, planetesimal accretion becomes inefficient due to increasing planetesimal eccentricities, whilst pebble accretion becomes more efficient as the initial proto-embryo masses increase, allowing them to significantly grow before the pebble supply is depleted. Combining both scenarios allows for more massive proto-embryos at larger distances, since the accretion of planetesimals allows pebble accretion to become more efficient, allowing giant planet cores to form at distances upto 10 au. By including more realistic initial proto-embryo and planetesimal sizes, as well as combined accretion scenarios, should allow for a more complete understanding in the beginning to end process of how planets and planetary systems form.
Planet formation is thought to occur in discs around young stars by the aggregation of small dust grains into much larger objects. The growth from grains to pebbles and from planetesimals to planets is now fairly well understood. The intermediate sta ge has however been found to be hindered by the radial-drift and fragmentation barriers. We identify a powerful mechanism in which dust overcomes both barriers. Its key ingredients are i) backreaction from the dust onto the gas, ii) grain growth and fragmentation, and iii) large-scale gradients. The pile-up of growing and fragmenting grains modifies the gas structure on large scales and triggers the formation of pressure maxima, in which particles are trapped. We show that these self-induced dust traps are robust: they develop for a wide range of disc structures, fragmentation thresholds and initial dust-to-gas ratios. They are favored locations for pebbles to grow into planetesimals, thus opening new paths towards the formation of planets.
Cool M dwarfs outnumber sun-like G stars by ten to one in the solar neighborhood. Due to their proximity, small size, and low mass, M-dwarf stars are becoming attractive targets for exoplanet searches via almost all current search methods. But what p lanetary systems can form around M dwarfs? Following up on the Cool Stars~16 Splinter Session Planet Formation Around M Dwarfs, we summarize here our knowledge of protoplanetary disks around cool stars, how they disperse, what planetary systems might form and can be detected with current and future instruments.
The recent rapid progress in observations of circumstellar disks and extrasolar planets has reinforced the importance of understanding an intimate coupling between star and planet formation. Under such a circumstance, it may be invaluable to attempt to specify when and how planet formation begins in star-forming regions and to identify what physical processes/quantities are the most significant to make a link between star and planet formation. To this end, we have recently developed a couple of projects. These include an observational project about dust growth in Class 0 YSOs and a theoretical modeling project of the HL Tauri disk. For the first project, we utilize the archive data of radio interferometric observations, and examine whether dust growth, a first step of planet formation, occurs in Class 0 YSOs. We find that while our observational results can be reproduced by the presence of large ($sim$ mm) dust grains for some of YSOs under the single-component modified blackbody formalism, an interpretation of no dust growth would be possible when a more detailed model is used. For the second project, we consider an origin of the disk configuration around HL Tauri, focusing on magnetic fields. We find that magnetically induced disk winds may play an important role in the HL Tauri disk. The combination of these attempts may enable us to move towards a comprehensive understanding of how star and planet formation are intimately coupled with each other.
Directly imaged planets are self-luminous companions of pre-main sequence and young main sequence stars. They reside in wider orbits ($sim10mathrm{s}-1000mathrm{s}$~AU) and generally are more massive compared to the close-in ($lesssim 10$~AU) planets . Determining the host star properties of these outstretched planetary systems is important to understand and discern various planet formation and evolution scenarios. We present the stellar parameters and metallicity ([Fe/H]) for a subsample of 18 stars known to host planets discovered by the direct imaging technique. We retrieved the high-resolution spectra for these stars from public archives and used the synthetic spectral fitting technique and Bayesian analysis to determine the stellar properties in a uniform and consistent way. For eight sources, the metallicities are reported for the first time, while the results are consistent with the previous estimates for the other sources. Our analysis shows that metallicities of stars hosting directly imaged planets are close to solar with a mean [Fe/H] = $-0.04pm0.27$~dex. The large scatter in metallicity suggests that a metal-rich environment may not be necessary to form massive planets at large orbital distances. We also find that the planet mass-host star metallicity relation for the directly imaged massive planets in wide-orbits is very similar to that found for the well studied population of short period ($lesssim 1$~yr) super-Jupiters and brown-dwarfs around main-sequence stars.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا