ترغب بنشر مسار تعليمي؟ اضغط هنا

Ice mantles on dust grains: dramatic variation of thickness with grain size

87   0   0.0 ( 0 )
 نشر من قبل Kedron Silsbee
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We compute the desorption rate of icy mantles on dust grains as a function of the size and composition of both the grain and the mantle. We combine existing models of cosmic ray (CR) related desorption phenomena with a model of CR transport to accurately calculate the desorption rates in dark regions of molecular clouds. We show that different desorption mechanisms dominate for grains of different sizes, and in different regions of the cloud. We then use these calculations to investigate a simple model of the growth of mantles, given a distribution of grain sizes. We find that modest variations of the desorption rate with grain size lead to a strong dependence of mantle thickness on grain size. Furthermore, we show that freeze-out is almost complete in the absence of an external UV field, even when photodesorption from CR produced UV is taken into consideration. Even at gas densities of $10^4$ ${rm cm^{-3}}$, less than 30% of the CO remains in the gas phase after $3times 10^5$ years for standard values of the CR ionization rate.

قيم البحث

اقرأ أيضاً

151 - Maxime Ruaud , Uma Gorti 2019
We study the effects of grain surface reactions on the chemistry of protoplanetary disks where gas, ice surface layers and icy mantles of dust grains are considered as three distinct phases. Gas phase and grain surface chemistry is found to be mainly driven by photo-reactions and dust temperature gradients. The icy disk interior has three distinct chemical regions: (i) the inner midplane with low FUV fluxes and warm dust ($gtrsim 15$K) that lead to the formation of complex organic molecules, (ii) the outer midplane with higher FUV from the ISM and cold dust where hydrogenation reactions dominate and, (iii) a molecular layer above the midplane but below the water condensation front where photodissociation of ices affects gas phase compositions. Some common radicals, e.g., CN and C$_2$H, exhibit a two-layered vertical structure and are abundant near the CO photodissociation front and near the water condensation front. The 3-phase approximation in general leads to lower vertical column densities than 2-phase models for many gas-phase molecules due to reduced desorption, e.g., H$_2$O, CO$_2$, HCN and HCOOH decrease by $sim$ two orders of magnitude. Finally, we find that many observed gas phase species originate near the water condensation front; photo-processes determine their column densities which do not vary significantly with key disk properties such as mass and dust/gas ratio.
252 - Lars Mattsson 2020
It has recently been shown that turbulence in the interstellar medium (ISM) can significantly accelerate the growth of dust grains by accretion of molecules, but the turbulent gas-density distribution also plays a crucial role in shaping the grain-si ze distribution. The growth velocity, i.e., the rate of change of the mean grain radius, is proportional to the local gas density if the growth species (molecules) are well-mixed in the gas. As a consequence, grain growth happens at vastly different rates in different locations, since the gas-density distribution of the ISM shows a considerable variance. Here, it is shown that grain-size distribution (GSD) rapidly becomes a reflection of the gas-density distribution, irrespective of the shape of the initial GSD. This result is obtained by modelling ISM turbulence as a Markov process, which in the special case of an Ornstein-Uhlenbeck process leads to a lognormal gas-density distribution, consistent with numerical simulations of isothermal compressible turbulence. This yields an approximately lognormal GSD; the sizes of dust grains in cold ISM clouds may thus not follow the commonly adopted power-law GSD with index -3.5, but corroborates the use of a log-nomral GSD for large grains, suggested by several studies. It is also concluded that the very wide range of gas densities obtained in the high Mach-number turbulence of molecular clouds must allow formation of a tail of very large grains reaching radii of several microns.
122 - A. Banzatti , L. Testi , A. Isella 2010
Grain growth in circumstellar disks is expected to be the first step towards the formation of planetary systems. There is now evidence for grain growth in several disks around young stars. Radially resolved images of grain growth in circumstellar dis ks are believed to be a powerful tool to constrain the dust evolution models and the initial stage for the formation of planets. In this paper we attempt to provide these constraints for the disk surrounding the young star CQ Tau. This system was already suggested from previous studies to host a population of grains grown to large sizes. We present new high angular resolution (0.3-0.9 arcsec) observations at wavelengths from 850um to 3.6cm obtained at the SMA, IRAM-PdBI and NRAO-VLA interferometers. We perform a combined analysis of the spectral energy distribution and of the high-resolution images at different wavelengths using a model to describe the dust thermal emission from the circumstellar disk. We include a prescription for the gas emission from the inner regions of the system. We detect the presence of evolved dust by constraining the disk averaged dust opacity coefficient beta (computed between 1.3 and 7mm) to be 0.6+/-0.1. This confirms the earlier suggestions that the disk contains dust grains grown to significant sizes and puts this on firmer grounds by tightly constraining the gas contamination to the observed fluxes at mm-cm wavelengths. We report some evidence of radial variations in dust properties, but current resolution and sensitivity are still too low for definitive results.
We investigate the abundance and properties (especially, grain size) of dust in galaxy halos using available observational data in the literature. There are two major sets of data. One is (i) the reddening curves at redshifts $zsim 1$ and 2 derived f or Mg II absorbers, which are assumed to trace the medium in galaxy halos. The other is (ii) the cosmic extinction up to $zsim 2$ mainly traced by distant background quasars. For (i), the observed reddening curves favor a grain radius of $asim 0.03~mu$m for silicate, while graphite is not supported because of its strong 2175 AA bump. Using amorphous carbon improves the fit to the reddening curves compared with graphite if the grain radius is $alesssim 0.03~mu$m. For (ii), the cosmic extinction requires $etagtrsim 10^{-2}$ ($eta$ is the ratio of the halo dust mass to the stellar mass; the observationally suggested value is $etasim 10^{-3}$) for silicate if $asim 0.03~mu$m as suggested by the reddening curve constraint. Thus, for silicate, we do not find any grain radius that satisfies both (i) and (ii) unless the halo dust abundance is much larger than suggested by the observations. For amorphous carbon, in contrast, a wide range of grain radius ($asim 0.01$--0.3~$mu$m) is accepted by the cosmic extinction; thus, we find that a grain radius range of $asim 0.01$--0.03 $mu$m is supported by combining (i) and (ii). We also discuss the origin of dust in galaxy halos, focusing on the importance of grain size in the physical mechanism of dust supply to galaxy halos.
63 - Haifeng Yang 2021
Alignment of non-spherical grains with magnetic fields is an important problem as it lays the foundation of probing magnetic fields with polarized dust thermal emissions. In this paper, we investigate the feasibility of magnetic alignment in protopla netary disks (PPDs). We use an alignment condition that Larmor precession should be fast compared with the damping timescale. We first show that the Larmor precession timescale is some three orders of magnitude longer than the damping time for millimeter-sized grains under conditions typical of PPDs, making the magnetic alignment unlikely. The precession time can be shortened by superparamagnetic inclusions (SPIs), but the reduction factor strongly depends on the size of the SPI clusters, which we find is limited by the so-called N{e}els relaxation process. In particular, the size limit of SPIs is set by the so-called anisotropic energy constant of the SPI material, which describes the energy barrier needed to change the direction of the magnetic moment of an SPI. For the most common iron-bearing materials, we find maximum SPI sizes corresponding to a reduction factor of the Larmor precession timescale of order $10^3$. We also find that reaching this maximum reduction factor requires fine-tuning on the SPI sizes. Lastly, we illustrate the effects of the SPI size limits on magnetic alignment of dust grains with a simple disk model, and we conclude that it is unlikely for relatively large grains of order 100 $mu$m or more to be aligned with magnetic fields even with SPIs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا