ﻻ يوجد ملخص باللغة العربية
Turbulence is the dominant source of collisional velocities for grains with a wide range of sizes in protoplanetary disks. So far, only Kolmogorov turbulence has been considered for calculating grain collisional velocities, despite the evidence that turbulence in protoplanetary disks may be non-Kolmogorov. In this work, we present calculations of grain collisional velocities for arbitrary turbulence models characterized by power-law spectra and determined by three dimensionless parameters: the slope of the kinetic energy spectrum, the slope of the auto-correlation time, and the Reynolds number. The implications of our results are illustrated by numerical simulations of the grain size evolution for different turbulence models. We find that for the modeled cases of the Iroshnikov-Kraichnan turbulence and the turbulence induced by the magneto-rotational instabilities, collisional velocities of small grains are much larger than those for the standard Kolmogorov turbulence. This leads to faster grain coagulation in the outer regions of protoplanetary disks, resulting in rapid increase of dust opacity in mm-wavelength and possibly promoting planet formation in very young disks.
Turbulence in the protoplanetary disks induces collisions between dust grains, and thus facilitates grain growth. We investigate the two fundamental assumptions of the turbulence in obtaining grain collisional velocities -- the kinetic energy spectru
Grain surface chemistry is key to the composition of protoplanetary disks around young stars. The temperature of grains depends on their size. We evaluate the impact of this temperature dependence on the disk chemistry. We model a moderately massive
Aims: In order to understand the first stages of planet formation, when tiny grains aggregate to form planetesimals, one needs to simultaneously model grain growth, vertical settling and radial migration of dust in protoplanetary disks. In this study
We present a new instability driven by a combination of coagulation and radial drift of dust particles. We refer to this instability as ``coagulation instability and regard it as a promising mechanism to concentrate dust particles and assist planetes
We study the impact of dust evolution in a protoplanetary disk around a T Tauri star on the disk chemical composition. For the first time we utilize a comprehensive model of dust evolution which includes growth, fragmentation and sedimentation. Speci