ﻻ يوجد ملخص باللغة العربية
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fully described by Dajczer and Florit cite{DF2} in terms of a certain class of elliptic surfaces. Opposed to this, we prove that nonminimal $n$-dimensional submanifolds in space forms of any codimension are locally cylinders provided that they carry a totally geodesic distribution of rank $n-2geq2,$ which is contained in the relative nullity distribution, such that the length of the mean curvature vector field is constant along each leaf. The case of dimension $n=3$ turns out to be special. We show that there exist elliptic three-dimensional submanifolds in spheres satisfying the above properties. In fact, we provide a parametrization of three-dimensional submanifolds as unit tangent bundles of minimal surfaces in the Euclidean space whose first curvature ellipse is nowhere a circle and its second one is everywhere a circle. Moreover, we provide several applications to submanifolds whose mean curvature vector field has constant length, a much weaker condition than being parallel.
We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)timesR^{ell}$ in a product Riemannian manifold $N^{n-ell}timesR^{ell}$. It follows that a complete hypersurface of given constant mean curvature l
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and
We investigate complete minimal submanifolds $fcolon M^3toHy^n$ in hyperbolic space with index of relative nullity at least one at any point. The case when the ambient space is either the Euclidean space or the round sphere was already studied in cit
In this paper we investigate $m$-dimensional complete minimal submanifolds in Euclidean spheres with index of relative nullity at least $m-2$ at any point. These are austere submanifolds in the sense of Harvey and Lawson cite{harvey} and were initial
Mean curvature flow for isoparametric submanifolds in Euclidean spaces and spheres was studied by the authors in [LT]. In this paper, we will show that all these solutions are ancient solutions. We also discuss rigidity of ancient mean curvature flow