ﻻ يوجد ملخص باللغة العربية
Mean curvature flow for isoparametric submanifolds in Euclidean spaces and spheres was studied by the authors in [LT]. In this paper, we will show that all these solutions are ancient solutions. We also discuss rigidity of ancient mean curvature flows for hypersurfaces in spheres and its relation to the Cherns conjecture on the norm of the second fundamental forms of minimal hypersurfaces in spheres.
A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and
We prove some non-existence theorems for translating solutions to Lagrangian mean curvature flow. More precisely, we show that translating solutions with an $L^2$ bound on the mean curvature are planes and that almost-calibrated translating solutions
An isoparametric hypersurface in unit spheres has two focal submanifolds. Condition A plays a crucial role in the classification theory of isoparametric hypersurfaces in [CCJ07], [Chi16] and [Miy13]. This paper determines $C_A$, the set of points wit
We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)timesR^{ell}$ in a product Riemannian manifold $N^{n-ell}timesR^{ell}$. It follows that a complete hypersurface of given constant mean curvature l
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fu