ترغب بنشر مسار تعليمي؟ اضغط هنا

Complete minimal submanifolds with nullity in Euclidean spheres

128   0   0.0 ( 0 )
 نشر من قبل Theodoros Vlachos
 تاريخ النشر 2017
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

In this paper we investigate $m$-dimensional complete minimal submanifolds in Euclidean spheres with index of relative nullity at least $m-2$ at any point. These are austere submanifolds in the sense of Harvey and Lawson cite{harvey} and were initially studied by Bryant cite{br}. For any dimension and codimension there is an abundance of non-complete examples fully described by Dajczer and Florit cite{DF2} in terms of a class of surfaces, called elliptic, for which the ellipse of curvature of a certain order is a circle at any point. Under the assumption of completeness, it turns out that any submanifold is either totally geodesic or has dimension three. In the latter case there are plenty of examples, even compact ones. Under the mild assumption that the Omori-Yau maximum principle holds on the manifold, a trivial condition in the compact case, we provide a complete local parametric description of the submanifolds in terms of $1$-isotropic surfaces in Euclidean space. These are the minimal surfaces for which the standard ellipse of curvature is a circle at any point. For these surfaces, there exists a Weierstrass type representation that generates all simply-connected ones.

قيم البحث

اقرأ أيضاً

We investigate complete minimal submanifolds $fcolon M^3toHy^n$ in hyperbolic space with index of relative nullity at least one at any point. The case when the ambient space is either the Euclidean space or the round sphere was already studied in cit e{dksv1} and cite{dksv2}, respectively. If the scalar curvature is bounded from below we conclude that the submanifold has to be either totally geodesic or a generalized cone over a complete minimal surface lying in an equidistant submanifold of $Hy^n$.
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fu lly described by Dajczer and Florit cite{DF2} in terms of a certain class of elliptic surfaces. Opposed to this, we prove that nonminimal $n$-dimensional submanifolds in space forms of any codimension are locally cylinders provided that they carry a totally geodesic distribution of rank $n-2geq2,$ which is contained in the relative nullity distribution, such that the length of the mean curvature vector field is constant along each leaf. The case of dimension $n=3$ turns out to be special. We show that there exist elliptic three-dimensional submanifolds in spheres satisfying the above properties. In fact, we provide a parametrization of three-dimensional submanifolds as unit tangent bundles of minimal surfaces in the Euclidean space whose first curvature ellipse is nowhere a circle and its second one is everywhere a circle. Moreover, we provide several applications to submanifolds whose mean curvature vector field has constant length, a much weaker condition than being parallel.
Let $Sigma$ be a $k$-dimensional complete proper minimal submanifold in the Poincar{e} ball model $B^n$ of hyperbolic geometry. If we consider $Sigma$ as a subset of the unit ball $B^n$ in Euclidean space, we can measure the Euclidean volumes of the given minimal submanifold $Sigma$ and the ideal boundary $partial_infty Sigma$, say $rvol(Sigma)$ and $rvol(partial_infty Sigma)$, respectively. Using this concept, we prove an optimal linear isoperimetric inequality. We also prove that if $rvol(partial_infty Sigma) geq rvol(mathbb{S}^{k-1})$, then $Sigma$ satisfies the classical isoperimetric inequality. By proving the monotonicity theorem for such $Sigma$, we further obtain a sharp lower bound for the Euclidean volume $rvol(Sigma)$, which is an extension of Fraser and Schoens recent result cite{FS} to hyperbolic space. Moreover we introduce the M{o}bius volume of $Sigma$ in $B^n$ to prove an isoperimetric inequality via the M{o}bius volume for $Sigma$.
Let $fcolon M^{2n}tomathbb{R}^{2n+ell}$, $n geq 5$, denote a conformal immersion into Euclidean space with codimension $ell$ of a Kaehler manifold of complex dimension $n$ and free of flat points. For codimensions $ell=1,2$ we show that such a subman ifold can always be locally obtained in a rather simple way, namely, from an isometric immersion of the Kaehler manifold $M^{2n}$ into either $mathbb{R}^{2n+1}$ or $mathbb{R}^{2n+2}$, the latter being a class of submanifolds already extensively studied.
E. Cartan proved that conformally flat hypersurfaces in S^{n+1} for n>3 have at most two distinct principal curvatures and locally envelop a one-parameter family of (n-1)-spheres. We prove that the Gauss-Codazzi equation for conformally flat hypersur faces in S^4 is a soliton equation, and use a dressing action from soliton theory to construct geometric Ribaucour transforms of these hypersurfaces. We describe the moduli of these hypersurfaces in S^4 and their loop group symmetries. We also generalise these results to conformally flat n-immersions in (2n-2)-spheres with flat normal bundle and constant multiplicities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا