ترغب بنشر مسار تعليمي؟ اضغط هنا

The mean curvature of cylindrically bounded submanifolds

199   0   0.0 ( 0 )
 نشر من قبل Greg\\'orio Pacelli F. Bessa
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We give an estimate of the mean curvature of a complete submanifold lying inside a closed cylinder $B(r)timesR^{ell}$ in a product Riemannian manifold $N^{n-ell}timesR^{ell}$. It follows that a complete hypersurface of given constant mean curvature lying inside a closed circular cylinder in Euclidean space cannot be proper if the circular base is of sufficiently small radius. In particular, any possible counterexample to a conjecture of Calabion complete minimal hypersurfaces cannot be proper. As another application of our method, we derive a result about the stochastic incompleteness of submanifolds with sufficiently small mean curvature.



قيم البحث

اقرأ أيضاً

A submanifold in space forms is isoparametric if the normal bundle is flat and principal curvatures along any parallel normal fields are constant. We study the mean curvature flow with initial data an isoparametric submanifold in Euclidean space and sphere. We show that the mean curvature flow preserves the isoparametric condition, develops singularities in finite time, and converges in finite time to a smooth submanifold of lower dimension. We also give a precise description of the collapsing.
We give lower bounds for the fundamental tone of open sets in submanifolds with locally bounded mean curvature in $ N times mathbb{R}$, where $N$ is an $n$-dimensional complete Riemannian manifold with radial sectional curvature $K_{N} leq kappa$. Wh en the immersion is minimal our estimates are sharp. We also show that cylindrically bounded minimal surfaces has positive fundamental tone.
In this paper, we investigate geometric conditions for isometric immersions with positive index of relative nullity to be cylinders. There is an abundance of noncylindrical $n$-dimensional minimal submanifolds with index of relative nullity $n-2$, fu lly described by Dajczer and Florit cite{DF2} in terms of a certain class of elliptic surfaces. Opposed to this, we prove that nonminimal $n$-dimensional submanifolds in space forms of any codimension are locally cylinders provided that they carry a totally geodesic distribution of rank $n-2geq2,$ which is contained in the relative nullity distribution, such that the length of the mean curvature vector field is constant along each leaf. The case of dimension $n=3$ turns out to be special. We show that there exist elliptic three-dimensional submanifolds in spheres satisfying the above properties. In fact, we provide a parametrization of three-dimensional submanifolds as unit tangent bundles of minimal surfaces in the Euclidean space whose first curvature ellipse is nowhere a circle and its second one is everywhere a circle. Moreover, we provide several applications to submanifolds whose mean curvature vector field has constant length, a much weaker condition than being parallel.
Jorge-Koutrofiotis and Pigola-Rigoli-Setti proved sharp sectional curvature estimates for extrinsically bounded submanifolds. Alias, Bessa and Montenegro showed that these estimates hold on properly immersed cylindrically bounded submanifolds. On the other hand, Alias, Bessa and Dajczer proved sharp mean curvature estimates for properly immersed cylindrically bounded submanifolds. In this paper we prove these sectional and mean curvature estimates for a larger class of submanifolds, the properly immersed $phi$-bounded submanifolds.
Mean curvature flow for isoparametric submanifolds in Euclidean spaces and spheres was studied by the authors in [LT]. In this paper, we will show that all these solutions are ancient solutions. We also discuss rigidity of ancient mean curvature flow s for hypersurfaces in spheres and its relation to the Cherns conjecture on the norm of the second fundamental forms of minimal hypersurfaces in spheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا