ترغب بنشر مسار تعليمي؟ اضغط هنا

Improving Language Identification for Multilingual Speakers

126   0   0.0 ( 0 )
 نشر من قبل Andrew Titus
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Spoken language identification (LID) technologies have improved in recent years from discriminating largely distinct languages to discriminating highly similar languages or even dialects of the same language. One aspect that has been mostly neglected, however, is discrimination of languages for multilingual speakers, despite being a primary target audience of many systems that utilize LID technologies. As we show in this work, LID systems can have a high average accuracy for most combinations of languages while greatly underperforming for others when accented speech is present. We address this by using coarser-grained targets for the acoustic LID model and integrating its outputs with interaction context signals in a context-aware model to tailor the system to each user. This combined system achieves an average 97% accuracy across all language combinations while improving worst-case accuracy by over 60% relative to our baseline.



قيم البحث

اقرأ أيضاً

We propose an end-to-end speaker-attributed automatic speech recognition model that unifies speaker counting, speech recognition, and speaker identification on monaural overlapped speech. Our model is built on serialized output training (SOT) with at tention-based encoder-decoder, a recently proposed method for recognizing overlapped speech comprising an arbitrary number of speakers. We extend SOT by introducing a speaker inventory as an auxiliary input to produce speaker labels as well as multi-speaker transcriptions. All model parameters are optimized by speaker-attributed maximum mutual information criterion, which represents a joint probability for overlapped speech recognition and speaker identification. Experiments on LibriSpeech corpus show that our proposed method achieves significantly better speaker-attributed word error rate than the baseline that separately performs overlapped speech recognition and speaker identification.
Speaker identification typically involves three stages. First, a front-end speaker embedding model is trained to embed utterance and speaker profiles. Second, a scoring function is applied between a runtime utterance and each speaker profile. Finally , the speaker is identified using nearest neighbor according to the scoring metric. To better distinguish speakers sharing a device within the same household, we propose a household-adapted nonlinear mapping to a low dimensional space to complement the global scoring metric. The combined scoring function is optimized on labeled or pseudo-labeled speaker utterances. With input dropout, the proposed scoring model reduces EER by 45-71% in simulated households with 2 to 7 hard-to-discriminate speakers per household. On real-world internal data, the EER reduction is 49.2%. From t-SNE visualization, we also show that clusters formed by household-adapted speaker embeddings are more compact and uniformly distributed, compared to clusters formed by global embeddings before adaptation.
Multilingual Automated Speech Recognition (ASR) systems allow for the joint training of data-rich and data-scarce languages in a single model. This enables data and parameter sharing across languages, which is especially beneficial for the data-scarc e languages. However, most state-of-the-art multilingual models require the encoding of language information and therefore are not as flexible or scalable when expanding to newer languages. Language-independent multilingual models help to address this issue, and are also better suited for multicultural societies where several languages are frequently used together (but often rendered with different writing systems). In this paper, we propose a new approach to building a language-agnostic multilingual ASR system which transforms all languages to one writing system through a many-to-one transliteration transducer. Thus, similar sounding acoustics are mapped to a single, canonical target sequence of graphemes, effectively separating the modeling and rendering problems. We show with four Indic languages, namely, Hindi, Bengali, Tamil and Kannada, that the language-agnostic multilingual model achieves up to 10% relative reduction in Word Error Rate (WER) over a language-dependent multilingual model.
This paper reports on the semi-supervised development of acoustic and language models for under-resourced, code-switched speech in five South African languages. Two approaches are considered. The first constructs four separate bilingual automatic spe ech recognisers (ASRs) corresponding to four different language pairs between which speakers switch frequently. The second uses a single, unified, five-lingual ASR system that represents all the languages (English, isiZulu, isiXhosa, Setswana and Sesotho). We evaluate the effectiveness of these two approaches when used to add additional data to our extremely sparse training sets. Results indicate that batch-wise semi-supervised training yields better results than a non-batch-wise approach. Furthermore, while the separate bilingual systems achieved better recognition performance than the unified system, they benefited more from pseudo-labels generated by the five-lingual system than from those generated by the bilingual systems.
Automatic speaker verification systems are vulnerable to audio replay attacks which bypass security by replaying recordings of authorized speakers. Replay attack detection (RA) detection systems built upon Residual Neural Networks (ResNet)s have yiel ded astonishing results on the public benchmark ASVspoof 2019 Physical Access challenge. With most teams using fine-tuned feature extraction pipelines and model architectures, the generalizability of such systems remains questionable though. In this work, we analyse the effect of discriminative feature learning in a multi-task learning (MTL) setting can have on the generalizability and discriminability of RA detection systems. We use a popular ResNet architecture optimized by the cross-entropy criterion as our baseline and compare it to the same architecture optimized by MTL using Siamese Neural Networks (SNN). It can be shown that SNN outperform the baseline by relative 26.8 % Equal Error Rate (EER). We further enhance the models architecture and demonstrate that SNN with additional reconstruction loss yield another significant improvement of relative 13.8 % EER.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا