ترغب بنشر مسار تعليمي؟ اضغط هنا

Language-agnostic Multilingual Modeling

62   0   0.0 ( 0 )
 نشر من قبل Arindrima Datta
 تاريخ النشر 2020
والبحث باللغة English




اسأل ChatGPT حول البحث

Multilingual Automated Speech Recognition (ASR) systems allow for the joint training of data-rich and data-scarce languages in a single model. This enables data and parameter sharing across languages, which is especially beneficial for the data-scarce languages. However, most state-of-the-art multilingual models require the encoding of language information and therefore are not as flexible or scalable when expanding to newer languages. Language-independent multilingual models help to address this issue, and are also better suited for multicultural societies where several languages are frequently used together (but often rendered with different writing systems). In this paper, we propose a new approach to building a language-agnostic multilingual ASR system which transforms all languages to one writing system through a many-to-one transliteration transducer. Thus, similar sounding acoustics are mapped to a single, canonical target sequence of graphemes, effectively separating the modeling and rendering problems. We show with four Indic languages, namely, Hindi, Bengali, Tamil and Kannada, that the language-agnostic multilingual model achieves up to 10% relative reduction in Word Error Rate (WER) over a language-dependent multilingual model.



قيم البحث

اقرأ أيضاً

Spoken language identification (LID) technologies have improved in recent years from discriminating largely distinct languages to discriminating highly similar languages or even dialects of the same language. One aspect that has been mostly neglected , however, is discrimination of languages for multilingual speakers, despite being a primary target audience of many systems that utilize LID technologies. As we show in this work, LID systems can have a high average accuracy for most combinations of languages while greatly underperforming for others when accented speech is present. We address this by using coarser-grained targets for the acoustic LID model and integrating its outputs with interaction context signals in a context-aware model to tailor the system to each user. This combined system achieves an average 97% accuracy across all language combinations while improving worst-case accuracy by over 60% relative to our baseline.
We present LAReQA, a challenging new benchmark for language-agnostic answer retrieval from a multilingual candidate pool. Unlike previous cross-lingual tasks, LAReQA tests for strong cross-lingual alignment, requiring semantically related cross-langu age pairs to be closer in representation space than unrelated same-language pairs. Building on multilingual BERT (mBERT), we study different strategies for achieving strong alignment. We find that augmenting training data via machine translation is effective, and improves significantly over using mBERT out-of-the-box. Interestingly, the embedding baseline that performs the best on LAReQA falls short of competing baselines on zero-shot variants of our task that only target weak alignment. This finding underscores our claim that languageagnostic retrieval is a substantively new kind of cross-lingual evaluation.
Subword modeling for zero-resource languages aims to learn low-level representations of speech audio without using transcriptions or other resources from the target language (such as text corpora or pronunciation dictionaries). A good representation should capture phonetic content and abstract away from other types of variability, such as speaker differences and channel noise. Previous work in this area has primarily focused unsupervised learning from target language data only, and has been evaluated only intrinsically. Here we directly compare multiple methods, including some that use only target language speech data and some that use transcribed speech from other (non-target) languages, and we evaluate using two intrinsic measures as well as on a downstream unsupervised word segmentation and clustering task. We find that combining two existing target-language-only methods yields better features than either method alone. Nevertheless, even better results are obtained by extracting target language bottleneck features using a model trained on other languages. Cross-lingual training using just one other language is enough to provide this benefit, but multilingual training helps even more. In addition to these results, which hold across both intrinsic measures and the extrinsic task, we discuss the qualitative differences between the different types of learned features.
In this paper, we conduct one of the very first studies for cross-corpora performance evaluation in the spoken language identification (LID) problem. Cross-corpora evaluation was not explored much in LID research, especially for the Indian languages. We have selected three Indian spoken language corpora: IIITH-ILSC, LDC South Asian, and IITKGP-MLILSC. For each of the corpus, LID systems are trained on the state-of-the-art time-delay neural network (TDNN) based architecture with MFCC features. We observe that the LID performance degrades drastically for cross-corpora evaluation. For example, the system trained on the IIITH-ILSC corpus shows an average EER of 11.80 % and 43.34 % when evaluated with the same corpora and LDC South Asian corpora, respectively. Our preliminary analysis shows the significant differences among these corpora in terms of mismatch in the long-term average spectrum (LTAS) and signal-to-noise ratio (SNR). Subsequently, we apply different feature level compensation methods to reduce the cross-corpora acoustic mismatch. Our results indicate that these feature normalization schemes can help to achieve promising LID performance on cross-corpora experiments.
We present a multispeaker, multilingual text-to-speech (TTS) synthesis model based on Tacotron that is able to produce high quality speech in multiple languages. Moreover, the model is able to transfer voices across languages, e.g. synthesize fluent Spanish speech using an English speakers voice, without training on any bilingual or parallel examples. Such transfer works across distantly related languages, e.g. English and Mandarin. Critical to achieving this result are: 1. using a phonemic input representation to encourage sharing of model capacity across languages, and 2. incorporating an adversarial loss term to encourage the model to disentangle its representation of speaker identity (which is perfectly correlated with language in the training data) from the speech content. Further scaling up the model by training on multiple speakers of each language, and incorporating an autoencoding input to help stabilize attention during training, results in a model which can be used to consistently synthesize intelligible speech for training speakers in all languages seen during training, and in native or foreign accents.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا