ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene Effusion-based Gas Sensor

95   0   0.0 ( 0 )
 نشر من قبل Irek Ros{\\l}o\\'n
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Porous, atomically thin graphene membranes have interesting properties for filtration and sieving applications because they can accommodate small pore sizes, while maintaining high permeability. These membranes are therefore receiving much attention for novel gas and water purification applications. Here we show that the atomic thickness and high resonance frequency of porous graphene membranes enables an effusion based gas sensing method that distinguishes gases based on their molecular mass. Graphene membranes are used to pump gases through nanopores using optothermal forces. By monitoring the time delay between the actuation force and the membrane mechanical motion, the permeation time-constants of various gases are shown to be significantly different. The measured linear relation between the effusion time constant and the square root of the molecular mass provides a method for sensing gases based on their molecular mass. The presented microscopic effusion based gas sensor can provide a small, low-power alternative for large, high-power, mass-spectrometry and optical spectrometry based gas sensing methods.

قيم البحث

اقرأ أيضاً

Technologically useful and robust graphene-based interfaces for devices require the introduction of highly selective, stable, and covalently bonded functionalities on the graphene surface, whilst essentially retaining the electronic properties of the pristine layer. This work demonstrates that highly controlled, ultrahigh vacuum covalent chemical functionalization of graphene sheets with a thiol-terminated molecule provides a robust and tunable platform for the development of hybrid nanostructures in different environments. We employ this facile strategy to covalently couple two representative systems of broad interest: metal nanoparticles, via S-metal bonds, and thiol-modified DNA aptamers, via disulfide bridges. Both systems, which have been characterized by a multi-technique approach, remain firmly anchored to the graphene surface even after several washing cycles. Atomic force microscopy images demonstrate that the conjugated aptamer retains the functionality required to recognize a target protein. This methodology opens a new route to the integration of high-quality graphene layers into diverse technological platforms, including plasmonics, optoelectronics, or biosensing. With respect to the latter, the viability of a thiol-functionalized chemical vapor deposition graphene-based solution-gated field-effect transistor array was assessed.
The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors the sensitivity offered by a single suspended graphene membrane is too small to compete with commercial sensors. Here, we realize highly sensitive capacitive pressure sensors consisting of arrays of nearly ten thousand small, freestanding double-layer graphene membranes. We fabricate large arrays of small diameter membranes using a procedure that maintains the superior material and mechanical properties of graphene, even after high-temperature anneals. These sensors are readout using a low cost battery-powered circuit board, with a responsivity of up to 47.8 aF Pa$^{-1}$ mm$^{-2}$, thereby outperforming commercial sensors.
83 - A. K. Ott , C. Dou , U. Sassi 2018
Resistive-switching memories are alternative to Si-based ones, which face scaling and high power consumption issues. Tetrahedral amorphous carbon (ta-C) shows reversible, non-volatile resistive switching. Here we report polarity independent ta-C resi stive memory devices with graphene-based electrodes. Our devices show ON/OFF resistance ratios$sim$4x$10^5$, ten times higher than with metal electrodes, with no increase in switching power, and low power density$sim$14$mu$W/$mu$m$^2$. We attribute this to a suppressed tunneling current due to the low density of states of graphene near the Dirac point, consistent with the current-voltage characteristics derived from a quantum point contact model. Our devices also have multiple resistive states. This allows storing more than one bit per cell. This can be exploited in a range of signal processing/computing-type operations, such as implementing logic, providing synaptic and neuron-like mimics, and performing analogue signal processing in non-von-Neumann architectures
This study proposes a novel design of glucose sensor with enhanced selectivity and sensitivity by using graphene Schottky diodes, which is composed of Graphene (G)/Platinum Oxide (PtO)/n-Silicon (Si) heterostructure. The sensor was tested with differ ent glucose concentrations and interfering solutions to investigate its sensitivity and selectivity. Different structures of the device were studied by adjusting the platinum oxide film thickness to investigate its catalytic activity. It was found that the film thickness plays a significant role in the efficiency of glucose oxidation and hence in overall device sensitivity. 0.8-2 uA output current was obtained in the case of 4-10 mM with a sensitivity of 0.2 uA/mM.cm2. Besides, results have shown that 0.8 uA and 15 uA were obtained by testing 4 mM glucose on two different PtO thicknesses, 30 nm, and 50 nm, respectively. The sensitivity of the device was enhanced by 150% (i.e., up to 30 uA/mM.cm2) by increasing the PtO layer thickness. This was attributed to both the increase of the number of active sites for glucose oxidation as well as the increase in the graphene layer thickness, which leads to enhanced charge carriers concentration and mobility. Moreover, theoretical investigations were conducted using the Density Function Theory (DFT) to understand the detection method and the origins of selectivity better. The working principle of the sensors puts it in a competitive position with other non-enzymatic glucose sensors. DFT calculations provided a qualitative explanation of the charge distribution across the graphene sheet within a system of a platinum substrate with D-glucose molecules above. The proposed G/PtO/n-Si heterostructure has proven to satisfy these factors, which opens the door for further developments of more reliable non-enzymatic glucometers for continuous glucose monitoring systems.
We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: 1) The sensor sensitivity ca n be doubled by utilizing both n- and p-type conductance. 2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. 3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to 290 nT/sqrt(Hz) and sensitivity up to 0.55 V/VT was found for Hall sensors fabricated on flexible foil. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا