ﻻ يوجد ملخص باللغة العربية
The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors the sensitivity offered by a single suspended graphene membrane is too small to compete with commercial sensors. Here, we realize highly sensitive capacitive pressure sensors consisting of arrays of nearly ten thousand small, freestanding double-layer graphene membranes. We fabricate large arrays of small diameter membranes using a procedure that maintains the superior material and mechanical properties of graphene, even after high-temperature anneals. These sensors are readout using a low cost battery-powered circuit board, with a responsivity of up to 47.8 aF Pa$^{-1}$ mm$^{-2}$, thereby outperforming commercial sensors.
We realize squeeze film pressure sensors using suspended, high mechanical quality silicon nitride membranes forming few-micron gap sandwiches. The effects of air pressure on the mechanical vibrations of the membranes are investigated in the range 10^
We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: 1) The sensor sensitivity ca
Semiconducting piezoelectric materials have attracted considerable interest due to their central role in the emerging field of piezotronics, where the development of a piezo-potential in response to stress or strain can be used to tune the band struc
The unique properties and atomic thickness of two-dimensional (2D) materials enable smaller and better nanoelectromechanical sensors with novel functionalities. During the last decade, many studies have successfully shown the feasibility of using sus
To realize nanomechanical graphene-based pressure and gas sensors, it is beneficial to have a method to electrically readout the static displacement of a suspended graphene membrane. Capacitive readout, typical in micro-electro-mechanical systems (ME