ترغب بنشر مسار تعليمي؟ اضغط هنا

Tetrahedral amorphous carbon resistive memories with graphene-based electrodes

84   0   0.0 ( 0 )
 نشر من قبل Andrea Ferrari
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Resistive-switching memories are alternative to Si-based ones, which face scaling and high power consumption issues. Tetrahedral amorphous carbon (ta-C) shows reversible, non-volatile resistive switching. Here we report polarity independent ta-C resistive memory devices with graphene-based electrodes. Our devices show ON/OFF resistance ratios$sim$4x$10^5$, ten times higher than with metal electrodes, with no increase in switching power, and low power density$sim$14$mu$W/$mu$m$^2$. We attribute this to a suppressed tunneling current due to the low density of states of graphene near the Dirac point, consistent with the current-voltage characteristics derived from a quantum point contact model. Our devices also have multiple resistive states. This allows storing more than one bit per cell. This can be exploited in a range of signal processing/computing-type operations, such as implementing logic, providing synaptic and neuron-like mimics, and performing analogue signal processing in non-von-Neumann architectures

قيم البحث

اقرأ أيضاً

Polymer field-effect transistors with 2D graphene electrodes are devices that merge the best of two worlds: on the one hand, the low-cost and processability of organic materials and, on the other hand, the chemical robustness, extreme thinness and fl exibility of graphene. Here, we demonstrate the tuning of the ambipolar nature of the semiconductor polymer N2200 from Polyera ActiveInk by incorporating graphene electrodes in a transistor geometry. Our devices show a balanced ambipolar behavior with high current ON-OFF ratio and charge carrier mobilities. These effects are caused by both the effective energy barrier modulation and by the weak electric field screening effect at the graphene-polymer interface. Our results provide a strategy to integrate 2D graphene electrodes in ambipolar transistors in order to improve and modulate their characteristics, paving the way for the design of novel organic electronic devices.
In this work we test graphene electrodes in nano-metric channel n-type Organic Field EffectTransistors (OFETs) based on thermally evaporated thin films of perylene-3,4,9,10-tetracarboxylic acid diimide derivative (PDIF-CN2). By a thorough comparison with short channel transistors made with reference gold electrodes, we found that the output characteristics of the graphene-based devices respond linearly to the applied biases, in contrast with the supra-linear trend of gold-based transistors. Moreover, short channel effects are considerably suppressed in graphene electrodes devices. More specifically, current on/off ratios independent of the channel length (L) and enhanced response for high longitudinal biases are demonstrated for L down to ~140 nm. These results are rationalized taking into account the morphological and electronic characteristics of graphene, showing that the use of graphene electrodes may help to overcome the problem of Space Charge Limited Current (SCLC) in short channel OFETs.
While crystalline two-dimensional materials have become an experimental reality during the past few years, an amorphous 2-D material has not been reported before. Here, using electron irradiation we create an sp2-hybridized one-atom-thick flat carbon membrane with a random arrangement of polygons, including four-membered carbon rings. We show how the transformation occurs step-by-step by nucleation and growth of low-energy multi-vacancy structures constructed of rotated hexagons and other polygons. Our observations, along with first-principles calculations, provide new insights to the bonding behavior of carbon and dynamics of defects in graphene. The created domains possess a band gap, which may open new possibilities for engineering graphene-based electronic devices.
Porous, atomically thin graphene membranes have interesting properties for filtration and sieving applications because they can accommodate small pore sizes, while maintaining high permeability. These membranes are therefore receiving much attention for novel gas and water purification applications. Here we show that the atomic thickness and high resonance frequency of porous graphene membranes enables an effusion based gas sensing method that distinguishes gases based on their molecular mass. Graphene membranes are used to pump gases through nanopores using optothermal forces. By monitoring the time delay between the actuation force and the membrane mechanical motion, the permeation time-constants of various gases are shown to be significantly different. The measured linear relation between the effusion time constant and the square root of the molecular mass provides a method for sensing gases based on their molecular mass. The presented microscopic effusion based gas sensor can provide a small, low-power alternative for large, high-power, mass-spectrometry and optical spectrometry based gas sensing methods.
We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: 1) The sensor sensitivity ca n be doubled by utilizing both n- and p-type conductance. 2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. 3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to 290 nT/sqrt(Hz) and sensitivity up to 0.55 V/VT was found for Hall sensors fabricated on flexible foil. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا