ترغب بنشر مسار تعليمي؟ اضغط هنا

Gate-tunable graphene-based Hall sensors on flexible substrates with increased sensitivity

124   0   0.0 ( 0 )
 نشر من قبل Burkay Uzlu
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We demonstrate a novel concept for operating graphene-based Hall sensors using an alternating current (AC) modulated gate voltage, which provides three important advantages compared to Hall sensors under static operation: 1) The sensor sensitivity can be doubled by utilizing both n- and p-type conductance. 2) A static magnetic field can be read out at frequencies in the kHz range, where the 1/f noise is lower compared to the static case. 3) The off-set voltage in the Hall signal can be reduced. This significantly increases the signal-to-noise ratio compared to Hall sensors without a gate electrode. A minimal detectable magnetic field Bmin down to 290 nT/sqrt(Hz) and sensitivity up to 0.55 V/VT was found for Hall sensors fabricated on flexible foil. This clearly outperforms state-of-the-art flexible Hall sensors and is comparable to the values obtained by the best rigid III/V semiconductor Hall sensors.

قيم البحث

اقرأ أيضاً

The high flexibility, impermeability and strength of graphene membranes are key properties that can enable the next generation of nanomechanical sensors. However, for capacitive pressure sensors the sensitivity offered by a single suspended graphene membrane is too small to compete with commercial sensors. Here, we realize highly sensitive capacitive pressure sensors consisting of arrays of nearly ten thousand small, freestanding double-layer graphene membranes. We fabricate large arrays of small diameter membranes using a procedure that maintains the superior material and mechanical properties of graphene, even after high-temperature anneals. These sensors are readout using a low cost battery-powered circuit board, with a responsivity of up to 47.8 aF Pa$^{-1}$ mm$^{-2}$, thereby outperforming commercial sensors.
The evolution of information technology has been driven by the discovery of new forms of large magnetoresistance (MR), such as giant magnetoresistance (GMR) and tunnelling magnetoresistance (TMR) in magnetic multilayers. Recently, new types of MR hav e been observed in much simpler bilayers consisting of ferromagnetic (FM)/nonmagnetic (NM) thin films; however, the magnitude of MR in these materials is very small (0.01 ~ 1%). Here, we demonstrate that NM/FM bilayers consisting of a NM InAs quantum well conductive channel and an insulating FM (Ga,Fe)Sb layer exhibit giant proximity magnetoresistance (PMR) (~80% at 14 T). This PMR is two orders of magnitude larger than the MR observed in NM/FM bilayers reported to date, and its magnitude can be controlled by a gate voltage. These results are explained by the penetration of the InAs two-dimensional-electron wavefunction into (Ga,Fe)Sb. The ability to strongly modulate the NM channel current by both electrical and magnetic gating represents a new concept of magnetic-gating spin transistors.
This paper deals with the modeling of sensitivity of epitaxial graphene Hall bars, from sub-micrometer to micrometer size, to the stray field generated by a magnetic microbead. To demonstrate experiment feasibility, the model is first validated by co mparison to measurement results, considering an ac-dc detection scheme. Then, an exhaustive numerical analysis is performed to investigate signal detriment caused by material defects, saturation of bead magnetization at high fields, increment of bead distance from sensor surface and device width increase.
100 - Andreas Hemmetter 2021
Flexible energy harvesting devices fabricated in scalable thin-film processes are important components in the field of wearable electronics and the Internet of Things. We present a flexible rectenna based on a one-dimensional junction metal-insulator -graphene diode, which offers low-noise power detection at terahertz (THz) frequencies. The rectennas are fabricated on a flexible polyimide film in a scalable process by photolithography using graphene grown by chemical vapor deposition. A one-dimensional junction area reduces the junction capacitance and enables operation in the D-band (110 - 170 GHz). The rectenna on polyimide shows a maximum voltage responsivity of 80 V/W at 167 GHz in free space measurements and minimum noise equivalent power of 80 pW/$sqrt{text{Hz}}$.
Vertical packaging of multiple Giant Magnetoresistance (multi-GMR) stacks is a very interesting noise reduction strategy for local magnetic sensor measurements, which has not been reported experimentally so far. Here, we have fabricated multi-GMR sen sors (up to 12 repetitions) keeping good GMR ratio, linearity and low roughness. From magnetotransport measurements, two different resistance responses have been observed with a crossover around 5 GMR repetitions: step-like (N<5) and linear (N>5) behavior, respectively. With the help of micromagnetic simulations, we have analyzed in detail the two main magnetic mechanisms: the Neel coupling distribution induced by the roughness propagation and the additive dipolar coupling between the N free layers. Furthermore we have correlated the dipolar coupling mechanism, controlled by the number of GMRs (N) and lateral dimensions (width), to the sensor performance (sensitivity, noise and detectivity) in good agreement with analytical theory. The noise roughly decreases in multi-GMRs as 1/sqrt{N} in both regimes (low frequency 1/f and thermal noise). The sensitivity is even stronger reduced, scaling as 1/N, in the strong dipolar regime (narrow devices) while converges to a constant value in the weak dipolar regime (wide devices). Very interestingly, they are more robust against undesirable RTN noise than single GMRs at high voltages and the linearity can be extended towards much larger magnetic field range without dealing with the size and the reduction of GMR ratio. Finally, we have identified the optimal conditions for which multi-GMRs exhibit lower magnetic field detectivity than single GMRs: wide devices operating in the thermal regime where much higher voltage can be applied without generating remarkable magnetic noise.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا