ﻻ يوجد ملخص باللغة العربية
The authors previously found a model of universal quantum computation by making use of the coset structure of subgroups of a free group $G$ with relations. A valid subgroup $H$ of index $d$ in $G$ leads to a magic state $left|psirightrangle$ in $d$-dimensional Hilbert space that encodes a minimal informationally complete quantum measurement (or MIC), possibly carrying a finite contextual geometry. In the present work, we choose $G$ as the fundamental group $pi_1(V)$ of an exotic $4$-manifold $V$, more precisely a small exotic (space-time) $R^4$ (that is homeomorphic and isometric, but not diffeomorphic to the Euclidean $mathbb{R}^4$). Our selected example, due to to S. Akbulut and R.~E. Gompf, has two remarkable properties: (i) it shows the occurence of standard contextual geometries such as the Fano plane (at index $7$), Mermins pentagram (at index $10$), the two-qubit commutation picture $GQ(2,2)$ (at index $15$) as well as the combinatorial Grassmannian Gr$(2,8)$ (at index $28$) , (ii) it allows the interpretation of MICs measurements as arising from such exotic (space-time) $R^4$s. Our new picture relating a topological quantum computing and exotic space-time is also intended to become an approach of quantum gravity.
We study inelastic resonant scattering of a Gaussian wave packet with the parameters close to a zero of the complex scattering coefficient. We demonstrate, both theoretically and experimentally, that such near-zero scattering can result in anomalousl
In this paper we show how to place Michael Berrys discovery of knotted zeros in the quantum states of hydrogen in the context of general knot theory and in the context of our formulations for quantum knots. Berry gave a time independent wave function
The dynamics of many open quantum systems are described by stochastic master equations. In the discrete-time case, we recall the structure of the derived quantum filter governing the evolution of the density operator conditioned to the measurement ou
Kashaev algebra associated to a surface is a noncommutative deformation of the algebra of rational functions of Kashaev coordinates. For two arbitrary complex numbers, there is a generalized Kashaev algebra. The relationship between the shear coordin
We show that if a closed, oriented 3-manifold M is promised to be homeomorphic to a lens space L(n,k) with n and k unknown, then we can compute both n and k in polynomial time in the size of the triangulation of M. The tricky part is the parameter k.