ﻻ يوجد ملخص باللغة العربية
Kashaev algebra associated to a surface is a noncommutative deformation of the algebra of rational functions of Kashaev coordinates. For two arbitrary complex numbers, there is a generalized Kashaev algebra. The relationship between the shear coordinates and Kashaev coordinates induces a natural relationship between the quantum Teichmuller space and the generalized Kashaev algebra.
In this chapter, we survey the algebraic aspects of quantum Teichmuller space, generalized Kashaev algebra and a natural relationship between the two algebras.
We introduce a certain type of representations for the quantum Teichmuller space of a punctured surface, which we call local representations. We show that, up to finitely many choices, these purely algebraic representations are classified by classica
Kashaev and Reshetikhin previously described a way to define holonomy invariants of knots using quantum $mathfrak{sl}_2$ at a root of unity. These are generalized quantum invariants depend both on a knot $K$ and a representation of the fundamental gr
We prove that the every quasi-isometry of Teichmuller space equipped with the Teichmuller metric is a bounded distance from an isometry of Teichmuller space. That is, Teichmuller space is quasi-isometrically rigid.
Given a surface of infinite topological type, there are several Teichmuller spaces associated with it, depending on the basepoint and on the point of view that one uses to compare different complex structures. This paper is about the comparison betwe