ﻻ يوجد ملخص باللغة العربية
We show that if a closed, oriented 3-manifold M is promised to be homeomorphic to a lens space L(n,k) with n and k unknown, then we can compute both n and k in polynomial time in the size of the triangulation of M. The tricky part is the parameter k. The idea of the algorithm is to calculate Reidemeister torsion using numerical analysis over the complex numbers, rather than working directly in a cyclotomic field.
A knot k in a closed orientable 3-manifold is called nonsimple if the exterior of k possesses a properly embedded essential surface of nonnegative Euler characteristic. We show that if k is a nonsimple prime tunnel number one knot in a lens space M (
The authors previously found a model of universal quantum computation by making use of the coset structure of subgroups of a free group $G$ with relations. A valid subgroup $H$ of index $d$ in $G$ leads to a magic state $left|psirightrangle$ in $d$-d
The purpose of this paper is to give a new basis for examining the relationships of the Affine Index Polynomial and the Sawollek Polynomial. Blake Mellor has written a pioneering paper showing how the Affine Index Polynomial may be extracted from the
The Teichmueller polynomial of a fibered 3-manifold plays a useful role in the construction of mapping class having small stretch factor. We provide an algorithm that computes this polynomial of the fibered face associated to a pseudo-Anosov mapping
Conway-normalized Alexander polynomial of ribbon knots depend only on their ribbon diagrams. Here ribbon diagram means a ribbon spanning the ribbon knot marked with the information of singularities. We further give an algorithm to calculate Alexander