ترغب بنشر مسار تعليمي؟ اضغط هنا

Dielectric particle lofting from dielectric substrate exposed to low energy electron beam

253   0   0.0 ( 0 )
 نشر من قبل P. V. Krainov
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف P. V. Krainov




اسأل ChatGPT حول البحث

The particle-in-cell simulation is applied to study a nanometer-sized dielectric particle lofting from a dielectric substrate exposed to a low energy electron beam. The article discusses the electron accumulation between such a substrate and a particle lying on it, that can cause a particle lofting. The results are of interest for dust mitigation in the semiconductor industry, the lunar exploration and the explanation of the dust levitation.

قيم البحث

اقرأ أيضاً

214 - P. V. Krainov 2020
A nanometer-sized dielectric particle lying on a dielectric substrate is exposed to the flux of low-energy electrons, ion and electron fluxes from a cold plasma and the fluxes from the combination of these two sources with the help of particle-in-cel l simulation to investigate the particle lofting phenomenon. The results are of interest for dust mitigation in the semiconductor industry, the lunar exploration, and the explanation of the dust levitation.
We investigate the polarization switching mechanism in ferroelectric-dielectric (FE-DE) stacks and its dependence on the dielectric thickness (TDE). We fabricate HZO-Al2O3 (FE-DE) stack and experimentally demonstrate a decrease in remnant polarizatio n and an increase in coercive voltage of the FE-DE stack with an increase in TDE. Using phase-field simulations, we show that an increase in TDE results in a larger number of reverse domains in the FE layer to suppress the depolarization field, which leads to a decrease in remanent polarization and an increase in coercive voltage. Further, the applied voltage-driven polarization switching suggests domain-nucleation dominant characteristics for low TDE, and domain-wall motion-induced behavior for higher TDE. In addition, we show that the hysteretic charge-voltage characteristics of the FE layer in the FE-DE stack exhibit a negative slope region due to the multi-domain polarization switching in the FE layer. Based on our analysis, the trends in charge-voltage characteristics of the FE-DE stack with respect to different TDE (which are out of the scope of single-domain models) can be described well with multi-domain polarization switching mechanisms.
MAST-SEY is an open-source Monte Carlo code capable of calculating secondary electron emission using input data generated entirely from first principle (density functional theory) calculations. It utilizes the complex dielectric function and Penns th eory for inelastic scattering processes, and relativistic Schrodinger theory by means of a partial-wave expansion method to govern elastic scattering. It allows the user to include explicitly calculated momentum dependence of the dielectric function, as well as to utilize first-principle density of states in secondary electron generation, which provides a more complete description of the underlying physics. In this paper we thoroughly describe the theoretical aspects of the modeling, as used in the code, and present sample results obtained for copper and aluminum.
We demonstrate a compact technique to compress electron pulses to attosecond length, while keeping the energy spread reasonably small. The technique is based on Dielectric Laser Acceleration (DLA) in nanophotonic silicon structures. Unlike previous b allistic optical microbunching demonstrations, we use a modulator-demodulator scheme to compress phase space in the time and energy coordinates. With a second stage, we show that these pulses can be coherently accelerated, producing a net energy gain of $1.5pm0.1$ keV, which is significantly larger than the remaining energy spread of $0.88 ,_{-0.2}^{+0.0}$ keV FWHM. We show that by linearly sweeping the phase between the two stages, the energy spectrum can be coherently moved in a periodic manner, while keeping the energy spread roughly constant. After leaving the buncher, the electron pulse is also transversely focused, and can be matched into a following accelerator lattice. Thus, this setup is the prototype injector into a scalable DLA based on Alternating Phase Focusing (APF).
Optical pump-probe spectroscopy is a powerful tool for the study of non-equilibrium electronic dynamics and finds wide applications across a range of fields, from physics and chemistry to material science and biology. However, a shortcoming of conven tional pump-probe spectroscopy is that photoinduced changes in transmission, reflection and scattering can simultaneously contribute to the measured differential spectra, leading to ambiguities in assigning the origin of spectral signatures and ruling out quantitative interpretation of the spectra. Ideally, these methods would measure the underlying dielectric function (or the complex refractive index) which would then directly provide quantitative information on the transient excited state dynamics free of these ambiguities. Here we present and test a model independent route to transform differential transmission or reflection spectra, measured via conventional optical pump-probe spectroscopy, to changes in the quantitative transient dielectric function. We benchmark this method against changes in the real refractive index measured using time-resolved Frequency Domain Interferometry in prototypical inorganic and organic semiconductor films. Our methodology can be applied to existing and future pump-probe data sets, allowing for an unambiguous and quantitative characterisation of the transient photoexcited spectra of materials. This in turn will accelerate the adoption of pump-probe spectroscopy as a facile and robust materials characterisation and screening tool.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا