ترغب بنشر مسار تعليمي؟ اضغط هنا

Extracting Quantitative Dielectric Properties from Pump-Probe Spectroscopy

233   0   0.0 ( 0 )
 نشر من قبل Arjun Ashoka
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Optical pump-probe spectroscopy is a powerful tool for the study of non-equilibrium electronic dynamics and finds wide applications across a range of fields, from physics and chemistry to material science and biology. However, a shortcoming of conventional pump-probe spectroscopy is that photoinduced changes in transmission, reflection and scattering can simultaneously contribute to the measured differential spectra, leading to ambiguities in assigning the origin of spectral signatures and ruling out quantitative interpretation of the spectra. Ideally, these methods would measure the underlying dielectric function (or the complex refractive index) which would then directly provide quantitative information on the transient excited state dynamics free of these ambiguities. Here we present and test a model independent route to transform differential transmission or reflection spectra, measured via conventional optical pump-probe spectroscopy, to changes in the quantitative transient dielectric function. We benchmark this method against changes in the real refractive index measured using time-resolved Frequency Domain Interferometry in prototypical inorganic and organic semiconductor films. Our methodology can be applied to existing and future pump-probe data sets, allowing for an unambiguous and quantitative characterisation of the transient photoexcited spectra of materials. This in turn will accelerate the adoption of pump-probe spectroscopy as a facile and robust materials characterisation and screening tool.

قيم البحث

اقرأ أيضاً

In high-resolution core-valence-valence (CVV) Auger electron spectroscopy from the surface of a solid at thermal equilibrium, the main correlation satellite, visible in the case of strong valence-electron correlations, corresponds to a bound state of the two holes in the final state of the CVV Auger process. We discuss the physical significance of this satellite in nonequilibrium pump-probe Auger spectroscopy by numerical analysis of a single-band Hubbard-type model system including core states and a continuum of high-energy scattering states. It turns out that the spectrum of the photo-doped system, due to the increased double occupancy, shares features with the equilibrium spectrum at higher fillings. The pumping of doublons can be watched when working with overlapping pulses at short $Delta t$. For larger pump-probe delays $Delta t$ and on the typical femtosecond time scale for electronic relaxation processes, spectra are hardly $Delta t$-dependent, reflecting the high stability of bound two-hole states for strong Hubbard-$U$. We argue that taking into account the spatial expansion of single-particle orbitals when these are doubly occupied, as described by the dynamical Hubbard model, produces an oscillation of the barycenter of the satellite as a function of $Delta t$. Pump-probe Auger-electron spectroscopy is thus highly sensitive to dynamical screening of the Coulomb interaction.
61 - S. Kollarics 2020
Combined microwave-optical pump-probe methods are emerging to study the quantum state of spin qubit centers and the charge dynamics in semiconductors. A major hindrance is the limited bandwidth of microwave irradiation/detection circuitry which could be overcome with the use of broadband coplanar waveguides (CPW). We present the development and performance characterization of two spectrometers: an optically detected magnetic resonance spectrometer (ODMR) and a microwave detected photoconductivity measurement. In the first method light serves as detection and microwaves excite the investigated medium, while in the second the roles are interchanged. The performance is demonstrated by measuring ODMR maps on the nitrogen-vacancy center in diamond and time resolved photoconductivity in p-doped silicon. The results demonstrate both an efficient coupling of the microwave irradiation to the samples as well as an excellent sensitivity for minute changes in sample conductivity.
We investigate the valley related carrier dynamics in monolayer MoS2 using helicity resolved non-degenerate ultrafast pump-probe spectroscopy at the vicinity of the high-symmetry K point under the temperature down to 78 K. Monolayer MoS2 shows remark able transient reflection signals, in stark contrast to bilayer and bulk MoS2 due to the enhancement of many-body effect at reduced dimensionality. The helicity resolved ultrafast time-resolved result shows that the valley polarization is preserved for only several ps before scattering process makes it undistinguishable. We suggest that the dynamical degradation of valley polarization is attributable primarily to the exciton trapping by defect states in the exfoliated MoS2 samples. Our experiment and a tight-binding model analysis also show that the perfect valley CD selectivity is fairly robust against disorder at the K point, but quickly decays from the high-symmetry point in the momentum space in the presence of disorder.
145 - Y. Ishida , T. Otsu , A. Ozawa 2016
The paper describes a time-resolved photoemission (TRPES) apparatus equipped with a Yb-doped fiber laser system delivering 1.2-eV pump and 5.9-eV probe pulses at the repetition rate of 95 MHz. Time and energy resolutions are 11.3 meV and ~310 fs, res pectively; the latter is estimated by performing TRPES on a highly oriented pyrolytic graphite (HOPG). The high repetition rate is suited for achieving high signal-to-noise ratio in TRPES spectra, thereby facilitating investigations of ultrafast electronic dynamics in the low pump fluence (p) region. TRPES of polycrystalline bismuth (Bi) at p as low as 30 nJ/mm2 is demonstrated. The laser source is compact and is docked to an existing TRPES apparatus based on a 250-kHz Ti:sapphire laser system. The 95-MHz system is less prone to space-charge broadening effects compared to the 250-kHz system, which we explicitly show in a systematic probe-power dependency of the Fermi cutoff of polycrystalline gold. We also describe that the TRPES response of an oriented Bi(111)/HOPG sample is useful for fine-tuning the spatial overlap of the pump and probe beams even when p is as low as 30 nJ/mm2.
368 - J. Braun , R. Rausch , M. Potthoff 2014
A theoretical frame for pump-probe photoemission is presented. The approach is based on a general formulation using the Keldysh formalism for the lesser Greens function to describe the real-time evolution of the electronic degrees of freedom in the i nitial state after a strong pump pulse that drives the system out of equilibrium. The final state is represented by a time-reversed low-energy electron diffraction state. Our one-step description is related to Pendrys original formulation of the photoemission process as close as possible. The formalism allows for a quantitative calculation of time-dependent photocurrent for simple metals where a picture of effectively independent electrons is assumed as reliable. The theory is worked out for valence- and core-electron excitations. It comprises the study of different relativistic effects as a function of the pump-probe delay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا