ﻻ يوجد ملخص باللغة العربية
MAST-SEY is an open-source Monte Carlo code capable of calculating secondary electron emission using input data generated entirely from first principle (density functional theory) calculations. It utilizes the complex dielectric function and Penns theory for inelastic scattering processes, and relativistic Schrodinger theory by means of a partial-wave expansion method to govern elastic scattering. It allows the user to include explicitly calculated momentum dependence of the dielectric function, as well as to utilize first-principle density of states in secondary electron generation, which provides a more complete description of the underlying physics. In this paper we thoroughly describe the theoretical aspects of the modeling, as used in the code, and present sample results obtained for copper and aluminum.
Secondary electron emission (SEE) from inner linings of plasma chambers in electric thrusters for space propulsion can have a disruptive effect on device performance and efficiency. SEE is typically calculated using elastic and inelastic electron sca
Secondary electron emission (SEE) from solids plays an important role in many areas of science and technology.1 In recent years, there has been renewed interest in the experimental and theoretical studies of SEE. A recent study proposed that the refl
We present calculations of secondary electron emission (SEE) yields in tungsten as a function of primary electron energies between 50 eV and 1 keV and incidence angles between 0 and 90{deg}. We conduct a review of the established Monte Carlo methods
Surface erosion and secondary electron emission (SEE) have been identified as the most critical life-limiting factors in channel walls of Hall-effect thrusters for space propulsion. Recent wall concepts based on micro-architected surfaces have been p
We present density-functional theory (DFT) and quantum Monte Carlo (QMC) calculations designed to resolve experimental and theoretical controversies over the optical properties of H-terminated C nanoparticles (diamondoids). The QMC results follow the