ﻻ يوجد ملخص باللغة العربية
We introduce a new relaxation function depending on an arbitrary parameter as solution of a kinetic equation in the same way as the relaxation function introduced empirically by Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami, anomalous relaxation in dielectrics, which are recovered as particular cases. We propose a differential equation introducing a fractional operator written in terms of the Hilfer fractional derivative of order {xi}, with 0<{xi}<1 and type {eta}, with 0<{eta}<1. To discuss the solution of the fractional differential equation, the methodology of Laplace transform is required. As a by product we mention particular cases where the solution is completely monotone. Finally, the empirical models are recovered as particular cases.
We consider the $d=1$ nonlinear Fokker-Planck-like equation with fractional derivatives $frac{partial}{partial t}P(x,t)=D frac{partial^{gamma}}{partial x^{gamma}}[P(x,t) ]^{ u}$. Exact time-dependent solutions are found for $ u = frac{2-gamma}{1+ ga
This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fra
Based on the theory of continuous time random walks (CTRW), we build the models of characterizing the transitions among anomalous diffusions with different diffusion exponents, often observed in natural world. In the CTRW framework, we take the waiti
The stochastic solution with Gaussian stationary increments is establihsed for the symmetric space-time fractional diffusion equation when $0 < beta < alpha le 2$, where $0 < beta le 1$ and $0 < alpha le 2$ are the fractional derivation orders in tim
For the following semilinear equation with Hilfer- Hadamard fractional derivative begin{equation*} mathcal{D}^{alpha_1,beta}_{a^+} u-Deltamathcal{D}^{alpha_2,beta}_{a^+} u-Delta u =vert uvert^p, qquad t>a>0, qquad xinOmega, end{equation*} where $Omeg