ترغب بنشر مسار تعليمي؟ اضغط هنا

On nonexistence of global solutions for a semilinear equation with Hilfer- Hadamard fractional derivative

72   0   0.0 ( 0 )
 نشر من قبل Khaoula Bouguetof
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

For the following semilinear equation with Hilfer- Hadamard fractional derivative begin{equation*} mathcal{D}^{alpha_1,beta}_{a^+} u-Deltamathcal{D}^{alpha_2,beta}_{a^+} u-Delta u =vert uvert^p, qquad t>a>0, qquad xinOmega, end{equation*} where $Omegasubset mathbb{R}^N$ $(Ngeqslant 1)$, $p>1$, $0<alpha _{2}<alpha _{1}<1$ and $0<beta <1$. $mathcal{D}^{alpha_i,beta}_{a^+}$ $(i=1,2)$ is the Hilfer- Hadamard fractional derivative of order $alpha_i$ and of type $beta$, we establish the necessary conditions for the existence of global solutions.



قيم البحث

اقرأ أيضاً

We study fractional parabolic equations with indefinite nonlinearities $$ frac{partial u} {partial t}(x,t) +(-Delta)^s u(x,t)= x_1 u^p(x, t),,, (x, t) in mathbb{R}^n times mathbb{R}, $$ where $0<s<1$ and $1<p<infty$. We first prove that all positive bounded solutions are monotone increasing along the $x_1$ direction. Based on this we derive a contradiction and hence obtain non-existence of solutions. These monotonicity and nonexistence results are crucial tools in a priori estimates and complete blow-up for fractional parabolic equations in bounded domains. To this end, we introduce several new ideas and developed a systematic approach which may also be applied to investigate qualitative properties of solutions for many other fractional parabolic problems.
We introduce a new relaxation function depending on an arbitrary parameter as solution of a kinetic equation in the same way as the relaxation function introduced empirically by Debye, Cole-Cole, Davidson-Cole and Havriliak-Negami, anomalous relaxati on in dielectrics, which are recovered as particular cases. We propose a differential equation introducing a fractional operator written in terms of the Hilfer fractional derivative of order {xi}, with 0<{xi}<1 and type {eta}, with 0<{eta}<1. To discuss the solution of the fractional differential equation, the methodology of Laplace transform is required. As a by product we mention particular cases where the solution is completely monotone. Finally, the empirical models are recovered as particular cases.
109 - Mark Allen 2017
We prove uniqueness for weak solutions to abstract parabolic equations with the fractional Marchaud or Caputo time derivative. We consider weak solutions in time for divergence form equations when the fractional derivative is transferred to the test function.
89 - Fabio Punzo 2021
We study existence and non-existence of global solutions to the semilinear heat equation with a drift term and a power-like source term, on Cartan-Hadamard manifolds. Under suitable assumptions on Ricci and sectional curvatures, we show that global s olutions cannot exists if the initial datum is large enough. Furthermore, under appropriate conditions on the drift term, global existence is obtained, if the initial datum is sufficiently small. We also deal with Riemannian manifolds whose Ricci curvature tends to zero at infinity sufficiently fast.
This paper deals with the investigation of the computational solutions of an unified fractional reaction-diffusion equation, which is obtained from the standard diffusion equation by replacing the time derivative of first order by the generalized fra ctional time-derivative defined by Hilfer (2000), the space derivative of second order by the Riesz-Feller fractional derivative and adding the function phi(x,t) which is a nonlinear function overning reaction. The solution is derived by the application of the Laplace and Fourier transforms in a compact and closed form in terms of the H-function. The main result obtained in this paper provides an elegant extension of the fundamental solution for the space-time fractional diffusion equation obtained earlier by Mainardi et al. (2001, 2005) and a result very recently given by Tomovski et al. (2011). Computational representation of the fundamental solution is also obtained explicitly. Fractional order moments of the distribution are deduced. At the end, mild extensions of the derived results associated with a finite number of Riesz-Feller space fractional derivatives are also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا