ﻻ يوجد ملخص باللغة العربية
We consider the $d=1$ nonlinear Fokker-Planck-like equation with fractional derivatives $frac{partial}{partial t}P(x,t)=D frac{partial^{gamma}}{partial x^{gamma}}[P(x,t) ]^{ u}$. Exact time-dependent solutions are found for $ u = frac{2-gamma}{1+ gamma}$ ($-infty<gamma leq 2$). By considering the long-distance {it asymptotic} behavior of these solutions, a connection is established, namely $q=frac{gamma+3}{gamma+1}$ ($0<gamma le 2$), with the solutions optimizing the nonextensive entropy characterized by index $q$ . Interestingly enough, this relation coincides with the one already known for Levy-like superdiffusion (i.e., $ u=1$ and $0<gamma le 2$). Finally, for $(gamma, u)=(2, 0)$ we obtain $q=5/3$ which differs from the value $q=2$ corresponding to the $gamma=2$ solutions available in the literature ($ u<1$ porous medium equation), thus exhibiting nonuniform convergence.
We derive the generalized Fokker-Planck equation associated with the Langevin equation (in the Ito sense) for an overdamped particle in an external potential driven by multiplicative noise with an arbitrary distribution of the increments of the noise
We have derived a fractional Fokker-Planck equation for subdiffusion in a general space-and- time-dependent force field from power law waiting time continuous time random walks biased by Boltzmann weights. The governing equation is derived from a gen
We obtain exact results for fractional equations of Fokker-Planck type using evolution operator method. We employ exact forms of one-sided Levy stable distributions to generate a set of self-reproducing solutions. Explicit cases are reported and stud
We study the connection between the parameters of the fractional Fokker-Planck equation, which is associated with the overdamped Langevin equation driven by noise with heavy-tailed increments, and the transition probability density of the noise gener
Anomalous dynamics characterized by non-Gaussian probability distributions (PDFs) and/or temporal long-range correlations can cause subtle modifications of conventional fluctuation relations. As prototypes we study three variants of a generic time-fr