ﻻ يوجد ملخص باللغة العربية
The stochastic solution with Gaussian stationary increments is establihsed for the symmetric space-time fractional diffusion equation when $0 < beta < alpha le 2$, where $0 < beta le 1$ and $0 < alpha le 2$ are the fractional derivation orders in time and space, respectively. This solution is provided by imposing the identity between two probability density functions resulting (i) from a new integral representation formula of the fundamental solution of the symmetric space-time fractional diffusion equation and (ii) from the product of two independent random variables. This is an alternative method with respect to previous approaches such as the scaling limit of the continuos time random walk, the parametric subordination and the subordinated Langevin equation. A new integral representation formula for the fundamental solution of the space-time fractional diffusion equation is firstly derived. It is then shown that, in the symmetric case, a stochastic solution can be obtained by a Gaussian process with stationary increments and with a random wideness scale variable distributed according to an arrangement of two extremal Levy stable densities. This stochastic solution is self-similar with stationary increments and uniquely defined in a statistical sense by the mean and the covariance structure. Numerical simulations are carried out by choosing as Gaussian process the fractional Brownian motion. Sample paths and probability densities functions are shown to be in agreement with the fundamental solution of the symmetric space-time fractional diffusion equation.
We present a numerical method for the Monte Carlo simulation of uncoupled continuous-time random walks with a Levy alpha-stable distribution of jumps in space and a Mittag-Leffler distribution of waiting times, and apply it to the stochastic solution
For the Langevin model of the dynamics of a Brownian particle with perturbations orthogonal to its current velocity, in a regime when the particle velocity modulus becomes constant, an equation for the characteristic function $psi (t,lambda )=Mleft[e
This work studies exact solvability of a class of fractional reaction-diffusion equation with the Riemann-Liouville fractional derivatives on the half-line in terms of the similarity solutions. We derived the conditions for the equation to possess sc
Using the matrix product ansatz, we obtain solutions of the steady-state distribution of the two-species open one-dimensional zero range process. Our solution is based on a conventionally employed constraint on the hop rates, which eventually allows
Super-diffusion, characterized by a spreading rate $t^{1/alpha}$ of the probability density function $p(x,t) = t^{-1/alpha} p left( t^{-1/alpha} x , 1 right)$, where $t$ is time, may be modeled by space-fractional diffusion equations with order $1 <