ﻻ يوجد ملخص باللغة العربية
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal multiple access (NOMA) and relaying, depending on whether or not the GU and UAV are served simultaneously. Under the assumption of the system operating with infinite blocklength (IBL) codes, the IBL throughputs of both the GU and the UAV are derived under the two schemes. More importantly, we also consider the scenario in which data packets are transmitted via finite blocklength (FBL) codes, i.e., data transmission to both the UAV and the GU is performed under low-latency and high reliability constraints. In this setting, the FBL throughputs are characterized again considering the two schemes of NOMA and relaying. Following the IBL and FBL throughput characterizations, optimal resource allocation designs are subsequently proposed to maximize the UAV throughput while guaranteeing the throughput of the cellular user.Moreover, we prove that the relaying scheme is able to provide transmission service to the UAV while improving the GUs performance, and that the relaying scheme potentially offers a higher throughput to the UAV in the FBL regime than in the IBL regime. On the other hand, the NOMA scheme provides a higher UAV throughput (than relaying) by slightly sacrificing the GUs performance.
In multicell massive multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) networks, base stations (BSs) with multiple antennas deliver their radio frequency energy in the downlink, and Internet-of-Things (IoT) devices use their
This work proposes a new resource allocation optimization and network management framework for wireless networks using neighborhood-based optimization rather than fully centralized or fully decentralized methods. We propose hierarchical clustering wi
Resource management plays a pivotal role in wireless networks, which, unfortunately, leads to challenging NP-hard problems. Artificial Intelligence (AI), especially deep learning techniques, has recently emerged as a disruptive technology to solve su
The massive sensing data generated by Internet-of-Things will provide fuel for ubiquitous artificial intelligence (AI), automating the operations of our society ranging from transportation to healthcare. The realistic adoption of this technique howev
We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperati