ﻻ يوجد ملخص باللغة العربية
Resource management plays a pivotal role in wireless networks, which, unfortunately, leads to challenging NP-hard problems. Artificial Intelligence (AI), especially deep learning techniques, has recently emerged as a disruptive technology to solve such challenging problems in a real-time manner. However, although promising results have been reported, practical design guidelines and performance guarantees of AI-based approaches are still missing. In this paper, we endeavor to address two fundamental questions: 1) What are the main advantages of AI-based methods compared with classical techniques; and 2) Which neural network should we choose for a given resource management task. For the first question, four advantages are identified and discussed. For the second question, emph{optimality gap}, i.e., the gap to the optimal performance, is proposed as a measure for selecting model architectures, as well as, for enabling a theoretical comparison between different AI-based approaches. Specifically, for $K$-user interference management problem, we theoretically show that graph neural networks (GNNs) are superior to multi-layer perceptrons (MLPs), and the performance gap between these two methods grows with $sqrt{K}$.
Wireless power transfer (WPT) is an emerging paradigm that will enable using wireless to its full potential in future networks, not only to convey information but also to deliver energy. Such networks will enable trillions of future low-power devices
We consider a fully-loaded ground wireless network supporting unmanned aerial vehicle (UAV) transmission services. To enable the overload transmissions to a ground user (GU) and a UAV, two transmission schemes are employed, namely non-orthogonal mult
In this article, we first present the vision, key performance indicators, key enabling techniques (KETs), and services of 6G wireless networks. Then, we highlight a series of general resource management (RM) challenges as well as unique RM challenges
In this paper, the adoption of an intelligent reflecting surface (IRS) for multiple single-antenna source terminal (ST)-DT pairs in two-hop networks is investigated. Different from the previous studies on IRS that merely focused on tuning the reflect
Edge machine learning involves the deployment of learning algorithms at the network edge to leverage massive distributed data and computation resources to train artificial intelligence (AI) models. Among others, the framework of federated edge learni